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Foreword 

THE A C S SYMPOSIUM SERIES was first published i n 1974 to pro
vide a mechanism for publ ishing symposia quickly in book form. The 
purpose o f the series is to publ ish t imely, comprehensive books de
veloped from A C S sponsored symposia based on current scientific re
search. Occas ional ly , books are developed from symposia sponsored 
by other organizations when the topic is o f keen interest to the chem
istry audience. 

Before agreeing to publish a book, the proposed table o f contents 
is reviewed for appropriate and comprehensive coverage and for i n 
terest to the audience. Some papers may be excluded in order to better 
focus the book; others may be added to provide comprehensiveness. 
W h e n appropriate, ove rv iew or introductory chapters are added. 
Drafts o f chapters are peer-reviewed prior to f inal acceptance or re
jection, and manuscripts are prepared in camera-ready format. 

A s a rule, only or iginal research papers and or ig inal review pa
pers are included in the volumes. Verba t im reproductions of p rev i 
ously published papers are not accepted. 

ACS BOOKS DEPARTMENT 
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Preface 

N ow that you've picked up this book, don't set it down! W e sincerely believe 
you w i l l find value in this publication. This book is based on a symposium held at 
the 214 t h American Chemical Society National Meeting and Exposition during the 
Fal l of 1997 in Las Vegas. The symposium was co-organized by an academic 
chemist with strong interests in novel methodology for rational drug design 
(Parrill) and an industrial chemist with strong interests in applications of rational 
drug design (Reddy). The mix of papers in this book therefore reflects a broad 
spectrum of current topics in rational drug design. The authors also come from 
diverse work environments where research in rational drug design takes place, 
including the pharmaceutical industry, software development indus-try, and 
academia. The broad range of topics, perspectives, and approaches makes this 
book appealing to an equally distributed group of readers. 

Rational drug design is a multidisciplinary field. Specific sections in the 
book are likely to be useful to a variety of chemists not specifically involved in 
drug design. In particular, the papers in the second section should have appeal to 
many computational chemists, offering new methods for modeling solvent effects 
and dynamic processes in chemistry. 

Although the value of this book to computational chemists and researchers 
in-volved in rational drug or materials design is evident from a quick glance at the 
Table of Contents, there are several features of value to those wanting an 
introduction to the field. The first chapter offers an overview of rational drug 
design and provides explanation for many of the topics that occur in later 
chapters. Chapters 2 through 8 then discuss more detailed aspects of energetics 
and solvation in drug design. Chapters 9 through 12 describe applications of drug 
design methods. Chapters 13 through 16 detail new methods for Q S A R , 
combinatorial chemistry, and docking. In Chapter 17, David Clark provides a 
review of evolutionary algorithms in drug design that provides an excellent 
introduction to an optimization method that is rapidly finding application in 
almost all areas of rational drug design as well as in more general areas of 
chemistry. The following four chapters, 18 through 21 cover specific uses of 
evolutionary algorithms in drug design. The final chapter, "Is Rational Design 
Good for Anything?," by Donald Boyd, offers a perspective on successes and 
failures of rational drug design. 

If you are interested in drug design, molecular interactions, free energy 
computation, solvation, optimization problems, combinatorial chemistry, or 
Q S A R , don't put this book down! Whether you are looking only for an 
introduction or in-depth coverage you should find much to interest you in this 
volume. 

ix 
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Chapter 1 

Overview of Rational Drug Design 

M . Rami Reddy 1 and Abby L. Parr i l l 2 

1 Metabasis Therapeutics, 9360 Towne Centre Drive, San Diego, CA 92121 
2 Department of Chemistry, University of Memphis, Memphis, TN 38152 

Traditional Drug Design. 

Drug discovery programs in the pharmaceutical industry prior to the 1960's were 
based entirely on screening thousands of natural and synthetic compounds for 
activity. Once a potential drug compound was selected by this process, medicinal 
chemists would then synthesize hundreds of related compounds to develop the safest, 
most effective drug for patients use. However, the costs and risks associated with this 
process have become enormous; the cost of completing the research and development 
process for a single new drug has more than doubled in the last decade. Various 
sources estimate this cost to to be anywhere from $200-$500 mil l ion. Each year 
researchers test hundreds of thousands of chemical compounds, yet in the United 
States only about 25 new drugs are introduced. Even worldwide the introduction o f 
new drugs only reaches 40-45 per year. Many of these new drugs are only "me-too 
compounds", as the various companies attempt to apply their patented "molecular 
manipulations" to other companies' top selling drugs. 

A major limitation of the drug screening strategy is that it does not reveal why a 
compound is active or inactive, or how it might be improved. It also provides no 
assurances that an active compound is specific for a given human target protein. The 
lack of such specificity can be a major source of undesirable side effects which can 
halt the clinical development of a drug. Drug screening is essentially a blind process, 
indicating the reason for the need to test approximately 20,000 compounds in order 
to find one that becomes a marketable drug. 

Drug screening is often followed by structural optimization of lead compounds in 
order to improve potency and other properties, but deciding when to move from 
screening to synthesis is a problem.1 Although screening has produced the vast 
majority of existing drugs, it has not proven to be a wholly satisfactory strategy. 
There are many important therapeutic needs for which screening has failed. 

Notable work began to appear in 1962 which led to drastic changes in the process 

used to optimize chemical structures for medicinal purposes.2,3 This work 

© 1999 American Chemical Society 1 
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2 

established the foundation for the multi-parameter Q S A R methods in common use 
today. Subsequent publications outlined how the Hansch approach could be applied 
to drug design.4-6 

Challenges of Drug Design 

Researchers have worked for a long time to overcome the limitations of 
screening by designing molecules to perform specific therapeutic tasks. This vision 
of rational drug design was made more plausible by improvements in our 
understanding of the similarities between the actions of different biologically active 
compounds. Almost all drug molecules achieve a biological response through 
interaction with a target or receptor biomolecule. Descriptions of our earliest 
understanding of this interaction compared the drug molecule entry into a crevice of 
the target protein to a key in a lock, thus inhibiting the protein's normal biological 
function. Current descriptions liken drug interactions with biomolecules to a 
handshake, where both the ligand? and the protein adjust somewhat to accommodate 
the other. 

The general drug - target scheme suggests that structure-based rational drug 
design can be accomplished by three basic tasks. First, the appropriate protein target 
for a given therapeutic need must be identified. Second, the distinguishing structure 
of the target protein must be determined. Finally, the structure of a drug must be 
designed to interact with the target protein. However, a number of technical barriers 
have hindered work in the area of structure-based drug design. First, many important 
human diseases are not sufficiently well-understood at the molecular level to permit 
scientists to identify an appropriate drug target. Second, even when an appropriate 
target has been known, its molecular structure has generally not been known in 
adequate detail for drug design. Finally, the design of structures complementary to 
the target requires consideration of both the three-dimensional as wel l as the 
functional aspects of chemical structures. 

In cases where an appropriate biological target cannot be identified or 
characterized, rational drug design requires a different strategy. This alternate 
strategy makes use of structural information about drugs that produce the same 
biological response at different doses. It is often reasonable to assume that such 
drugs interact with the same, albeit unknown, biological target. They must, therefore, 
have some common set of structural features that are required in order to evoke the 
aforementioned biological response. This common set of structural features is the 
pharmacophore. This assumed similarity of drugs with similar effect suggests an 
alternative set of tasks that can accomplish rational drug design. First, the structural 
features important for biological activity must be determined. It is important that 
these features provide three-dimensional information either implicitly or explicitly. 
Second, optimal combinations for these features must be determined. Finally, the 
structure of a drug must be designed which exhibits the optimal combination of these 
features. Drug design efforts that seek to accomplish this alternative set of tasks are 
classified as pharmacophore based approaches.^ Drug design efforts using 
pharmacophore based approaches have their own set of challenges. First, 
determining important structural features when a variety of chemical structures 
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3 

demonstrate the same biological activity requires an understanding of the structural 
correspondance. A n additional complication arises due to the fact that some drugs 
which elicit the same biological activity display multiple modes of interaction with 
the target. Challenges for the structure design portion of the pharmacophore based 
approach are the same as the challenges during the corresponding activity when used 
in structure-based drug design approaches. 

Rational Drug Design 

Since the early 1980's, advances in molecular biology, protein crystallography, 
and computational chemistry have greatly aided Rational Drug Design (RDD) 
paradigms and the accuracy of their binding affinity predictions.9-11 Figure 1 shows 
a flowchart that describes the different approaches that may be employed by drug 
discovery groups during R D D or ligand design. Further discussion of R D D w i l l be 
organized into four main areas. Two of these areas, pharmacophore based approaches 
and structure-based approaches depend on whether the three-dimensional structure of 
the biological target is available. The other two areas, new lead generation and 
structure evaluation, w i l l be performed regardless o f whether the biological target 
structure is known. 

Pharmacophore-Based Approaches. The path at the first decision point is 
determined by the availability o f the 3-dimensional structure of the enzyme or 
complex. I f the structure of the biological target is unknown, various methods that 
utilize active (and inactive) analogs can be used to develop a working model of the 
requirements for biological activity, in other words, the pharmacophore. There are 
several evolving quantitative methods that utilize active compounds such as 2D-

Q S A R , 1 2 " 1 5 3 D - Q S A R 1 6 and neural networks. 1 7 Comparative Molecular Fie ld 
Analysis ( C o M F A ) is a very widely used 3 D - Q S A R technique. 1°* C o M F A represents 
a significant achievement due to its ability to develop a three-dimensional 
quantitative model that relates steric and electrostatic fields to biological activity. A n 
initial problem with the method was the need to select both conformations and 
alignments of the molecules to be modeled. Due to this problem, many initial uses of 
the C o M F A method involved molecules with rigid ring systems. For example, A l l e n 
et. al. predicted the binding affinities of six analogs of beta-carbolines for the 
benzodiazepine receptor (BzR) prior to synthesis ^ using a previously published 
C o M F A model. 19 The standard error of prediction for these six analogs is 
significantly lower than the standard error estimate of the cross-validation runs on the 
training set, hence the predictions made using this model are much better than 
expected. Even now, nine years after the first description of the C o M F A method, 
papers are appearing in the literature that offer new solutions to the al ignment^ and 
conformer selection^! problems. In addition to such three-dimensional models, 
pharmacophore hypotheses may also be developed by more qualitative methods. 22 
Using any of these methods one could propose new analogs of a lead compound 
based on the pharmacophore model. 
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Structure-Based Approaches. The other branch at the first decision point is used 
when the 3-dimensional structure of the enzyme or complex is known. The process 
typically begins by generating a working computational model from crystallographic 
data, but methods to develop models of the binding site from active ligands are 
becoming more prevalent.23-26 Development of the working model may include 
developing molecular mechanics force field parameters for non-standard residues 
consistent with the force field for standard residues, modeling any missing segments, 
assigning the protonation states of histidines, and orienting carbonyl and amide 
groups of asparagine and glutamine residues based upon neighboring donor and 
acceptor groups. Characterization of the active site is then aided by a variety of 
visualization tools. For example, hydrophobic and hydrophilic regions of the active 
site are readily identified by calculating the electrostatic potential at different surface 
grid points, and hydrogen bond donor and acceptor groups can be highlighted in the 
active site. The information gained by the characterization of the active-site is very 
important for proposing new lead compounds or analogs of a known leads. 

New Lead Generation. Generation of new lead compounds can be accomplished 
using de novo design methods to design new structures27,28 o r D y searching 
databases22,29-35 0 f known chemicals for particular structural features. De novo 
molecular design methods may design structures by sequentially adding or joining 
molecular fragments to a growing structure, 36-38 by adding functionality to an 
appropriately-sized molecular scaffold, or by evolving complete structures39-41 
Some de novo design methods have concentrated on the design of diverse molecular 
scaffolds 42 or on the development of diverse substituents to place on a single 
scaffold.35 Database search methods have been developed that search based on 
separation of molecular functionality by a particular number of bonds or distance 
ranges. More chemically intuitive database search methods seek for chemicals with 
particular steric and electrostatic fields.33 

A growing number of drug leads are being generated by combinatorial methods 
in combination with high-throughput screening. Computational chemistry is 
currently being used to assist efforts in this area by ensuring that the library of 
structures generated for use in high-throughput screening assays incorporates a great 
deal o f molecular diversity.34,35,43-48 This ensures that a diverse set o f lead 
compounds can be found and optimized at much lower cost than i f the entire library 
o f possible structures were synthesized and tested. The diverse set of leads that can 
be found by combinatorial chemistry can give important insight into the requirements 
for biological activity. This is particularly valuable for relatively new drug targets for 
which insufficient information is available for application of the structure-based or 
pharmacophore based approaches. 

Structure Evaluation. With new drug leads proposed, rapid and accurate prediction 
of in vivo activities are needed in order to evaluate and thereby prioritize these 
structures prior to chemical synthesis. In reality, evaluation methodologies are 
limited to in vitro measurables such as binding affinity although an in vivo property 
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6 

such as clinical effect would be ideal. The challenge within this limitation is to 
develop evaluation methods that rapidly and accurately predict absolute binding 
affinities o f the aforementioned large, diverse set of potential ligands. Currently 
available evaluation methods can either provide qualitative rank ordering of a large 
number of molecules in a relatively short period of time^^ or generate quantitatively 
accurate predictions of relative binding affinities for structurally related molecules 
using substantial computing power. 50,51 Consequently, biological activity 
evaluation techniques that increase speed without greatly compromising accuracy (or 
vice versa) are of value to drug discovery programs. Methods of ligand evaluation 
include graphical visualization of the ligand in the binding site,52 substitution of 
parameters from the new ligand into S A R models, and calculation of relative binding 
affinities.53,54 Usually about 50% of proposed new leads or optimized analogs can 
be eliminated by evaluating their expected binding affinities based on docking, 
visualization, conformational analysis and desolvation costs. The remaining analogs 
w i l l be ranked for synthesis using one or all o f the following methods, depending on 
computational power, time and resources, namely; 1) Free Energy Perturbation (FEP) 
calculations, which give very accurate quantitative predictions, but are 
computationally very expensive,50,51 2) molecular mechanics calculations, which 
w i l l give only qualitative predictions, but these calculations are very fast, 10,49 3) 
regression methods55 that incorporate interaction variables (intra and intermolecular 
interaction energies, hydrophobic interactions) and ligand properties (desolvation, log 
P etc.), which w i l l give semi-quantitative predictions, and are much faster than F E P 
calculations, and 4) relative hydration free energies.56 Calculation of relative 
hydration free energies is important in the design and optimization of molecules that 
act as enzyme inhibitors only after undergoing covalent hydration. For example, a 
class o f adenosine deaminase and cytidine deaminase inhibitors are known by X-ray 
crystallography to bind in the hydrated form. 57,58 Calculation of both the relative 
hydration free energy and the relative binding free energy for the hydrated species 
provides an accuarte method for calculating relative inhibitor potencies since it 
accounts for differences in both hydration equilibrium and binding. Then, top scoring 
compounds are synthesized and tested for activity. Depending on the convergence 
criteria of the biological activity, the flow chart is repeated. 

Free Energy Perturbation Methods. Since F E P methods provide very accurate 
quantitative predictions, we discuss its use in the comparison of similar ligands 
binding to an enzyme. This task is of particular value during the lead optimization 
phase of drug design. We considered two examples where F E P calculations were 
used successfully to predict binding affinities of ligands to enzymes prior to 
synthesis. The first example considered was one of the earliest successes of F E P 
calculations and involves transition state ligands bound to thermolysin, carried out by 
Merz and Kollman.51 In this work these authors predicted that the replacement o f an 
- N H group with a methylene group would not be detrimental to binding affinity 
despite a loss in a hydrogen bond between the N H and an amide carbonyl. The 
principal reason was related to ligand desolvation. This prediction, which was made 
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ahead of biochemical measurements, was later confirmed experimentally. In the 
second example, several research groups59-62 u s e ( j the F E P method for calculating 
relative binding affinities for HIV-1 protease inhibitors and obtained good agreement 
with experimental results. More recently, Reddy et. al^ used a computer-assisted 
drug design method that combines molecular mechanics, dynamics, F E P calculations, 
inhibitor design, synthesis, and biochemical testing of peptidomimetic inhibitors and 
crystallographic structure determination of the protein-inhibitor complexes to 
successfully design novel inhibitors of HIV-1 protease. This study involved a large 
set of molecules whose relative binding affinities were predicted using F E P methods 
prior to synthesis, and were later confirmed by experimental measurements. 

Fast Methods for Qualitative Binding Prediction of Binding Affinities of 
Ligands. Though the F E P method is theoretically more accurate and provides 
quantitative predictions between two similar ligands, it suffers from some practical 
limitations as applied to ligand design. Therefore, faster methods that can 
accommodate structural diversity are being developed. In some cases predictions of 
ligand binding has been based on soley on a visual analysis of structures without any 
force field calculations.52 These methods relied on graphical analysis of features 
such as steric and electronic complementary of the docked inhibitor to the target 
protein, the extent o f buried hydrophobic surface and the number of rotatable bonds 
in the ligand. Quantitative descriptors based on molecular shape 6^ and grid-based 
energetics^ have also proved to be useful. More advanced methods have used an 
empirical scoring funct ion^ derived from crystal structure data and experimental 
binding affinities. Though molecular mechanics methods appear to be more useful in 
this regard, these methods met with only limited success i n i t i a l l y , ^ due to the large 
approximations involved in the analysis (e.g., binding conformations, solvent model 
used, lack of entropic terms etc.). Recently, Montgomery et. al. adopted some 
improvements to the molecular mechanics methods by using Monte Carlo techniques 
to derive the binding conformations of inhibitors followed by energy 
minimizations. 10,67 This method allowed the prediction of binding affinities for 
proposed purine nucleoside phosphorylase inhibitors prior to synthesis. The 
calculated results suggested that differences in solvation and entropy would 
contribute minimally to binding affinity. Although the binding conformations were 
accurately predicted in this study, analysis of interaction energies across the inhibitors 
was less informative, presumably because of unaccounted factors such as desolvation 
and entropy. 

Future Directions 

Rational drug design methods are continually improving, and a wider variety of 
drug targets are being approached by these methods. A wide variety of additional 
improvements can be anticipated in the future as wel l . Improved computer hardware 
w i l l allow the use of more rigorous methods to be applied to large molecular systems. 
It w i l l not be surprising to see fully quantum mechanical docking studies appearing in 
the future. A second trend in computational methods that should continue in the 
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future is the development of both hybrid methods (currently known examples include 
genetic neural networks, 15 k-nearest neighbor genetic algori thms, 6 8 among others) 
and integrated tools for drug design. Advances in the modeling of protein structures 
w i l l promote more widespread use of structure-based drug design for drug targets that 
do not crystallize. 

New experimental methods w i l l also lead rational drug design in new directions. 
Combinatorial chemistry and high-throughput screening would not be as highly 
useful as they are today without solid-phase synthesis methods. Improvements in 
areas such as catalyst design to allow rapid access to an ever-increasing range of 
chemical structures, biological activity assays to allow the use of a wider variety of 
biological targets, and experimental structure determination methods to provide a 
wider selection of structural information for structure-based approaches w i l l have 
significant impact on how rational drug design is performed in the future. 

For lead optimization, the quantitative F E P methods provide an accurate 
prediction of relative binding affinities between inhibitors only for structurally similar 
molecules, whereas the qualitative methods provide qualitative trends for relative 
binding affinities across a more structurally diverse set of compounds. Ideally, 
methods that combine both of those features w i l l greatly enhance the utility of 
computational methods to drug design. Increased structural diversity, however, 
requires accurate calculation of additional factors that significantly impact the 
compounds binding affinity. For example, the larger the difference in structure, the 
greater the chance that solvation, entropy, inter and intramolecular interaction 
energies of ligand both in solvent and in the complex, hydrophobic effects, 
conformational flexibility etc., w i l l influence relative binding affinities. 
Understanding the magnitude of each contribution is key to an accurate prediction. 
Since an equation that incorporates each factor accurately has not been derived, we 
cannot expect accurate predictions using any of above mentioned methods for the 
diverse set of molecules. Therefore, regression equations which incorporates many of 
the properties discussed above would greatly strengthen the rational drug desion 
methods for fast screening (prior to synthesis) of diverse set of inhibitors to an 
enzyme semi-quantitatively. 

In conclusion, rational drug design is an exciting and constantly growing field of 
research. Its impact on quality of life and health ensure the vitality of the field. 
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Chapter 2 

Conformational and Energetic Aspects 
of Receptor-Ligand Recognition 

J . D. Hirst, B. Dominy, Z . Guo, M. Vieth, and C . L. Brooks 

Department of Molecular Biology, TPC-6, The Scripps Research Institute, 10550 
North Torrey Pines Road, La Jolla, CA 92037 

In this chapter, we describe ongoing work in our laboratory on the 
development of methodologies to enhance the process of inhibitor 
discovery and optimization. We review developments of energy 
(scoring) functions for flexible ligand, all atom docking and a 
scoring function to assess the efficiency of docking protocols. 
Using approximate free energy methods, we explore the similarity 
between bound and unbound conformations of ligands. When an 
appropriate anchor point descriptor is utilized, the lowest 
conformations in solution correspond well with the ligand-bound 
conformation in most cases. We also use approximate free energy 
methods to explore binding specificity of a ligand, LP149, binding 
to a model for resistance-evolved HIV protease, by comparing the 
characteristics of binding of this compound to proteases from HIV I 
and F I V . Finally, we provide an outline and applications of the λ-
dynamics methodology to a rigorous free-energy based screening 
calculation of multiple ligands in a common receptor. 

1. Overview and Introduction 

This chapter presents an overview of ongoing work in our group on the 
development of techniques to study the broad spectrum of questions that arise in 
research in the area of drug discovery and optimization. The studies described in the 
section below comprise the presentations of the authors in the symposia titled "New 
Methods in Computational Chemistry" and "Rational Drug Design" at the 214th 
National Meeting of the American Chemical Society Meeting that took place in Las 
Vegas, Nevada during September 7 and September 11, 1997. 

The theoretical study of ligand-receptor interactions, as practiced in the 
discovery and design of new therapeutics, requires the fusion of methodologies and 
techniques from many different areas of theoretical and computational chemistry. 
The process of binding, the identification of binding sites and the assessment of 
ligand "viability" involve the full description of the ligand and protein (receptor) in 
solution, the movement of the possibly flexible ligand into the receptor binding site 
and the energetic components of ligand-receptor interactions (7). The search 

12 © 1999 American Chemical Society 
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for a comprehensive solution to the drug design problem leads to several questions 
that may be addressed and answered using today's tools of structural and energetic 
modeling. Key questions that drive much work in this area include: What is the 
relationship between receptor bound conformations of the ligand and those it 
populates in solution prior to binding? Does flexibility of the ligand or receptor 
influence the efficiency of ligand binding? What determines optimal binding affinity 
in a series of ligands binding to the same receptor? What determines binding affinity 
to similar receptors, as occurs in cases where drug resistance develops due to 
evolutionary pressure in a pathogen? Can molecular origins of drug resistance be 
identified and quantified? 

Accompanying these fundamental questions are the technical issues that are 
embodied in the development of theoretical methods for their treatment. Issues like: 
How can one assess the efficacy of an approximate energy function used for 
describing ligand-receptor binding? Can one find an optimal scoring function for 
such an assessment? Are there preferred methods for docking ligands to known 
receptors? Can approximate free energy "estimators" effectively be used to explore 
or screen ligands binding to their receptors? Aspects of many of these questions are 
addressed in the sections of the chapter that follow. 

In the initial section, Section 2 below, we consider the question of ligand-
receptor docking. Our primary objective is the development of robust techniques 
that employ a complete molecular mechanics description of the energy for the 
docking of ligands to different receptors. Critical in this treatment is consideration 
of the flexibility of the ligand, the efficiency with which one can search for and find 
optimal sites of binding in ligand-receptor complexes, and the establishment of an 
appropriate scoring function to distinguish correctly docked and incorrectly docked 
structures from each other. The study that we outline below considers the binding 
of five different ligands to their respective receptors. The ligands have different 
degrees of flexibility and are representative of the range of ligands often 
encountered in drug discovery efforts. The receptors too, though all proteins, are 
believed to be representative. We note in this section that one may consider the 
problem of docking as composed of at least two major components. The first is 
whether the energy (scoring) function has the ability to correctly discriminate 
between docked and mis-docked ligands. This is clearly a necessary condition for 
the successful de novo prediction of new ligand receptor pairs, yet it seems to be a 
requirement often ignored, or at least glossed over, in many current approaches to 
ligand docking. We describe studies that explore 144 possible energy functions and 
devise a general scoring function for ranking these energy functions for their ability 
to discriminate between correctly docked and mis-docked conformations. Also 
critical are those features of the "docking landscape" that influence the efficiency of 
the search strategy in finding optimal docking solutions. W e develop and describe a 
docking efficiency assessor by considering a range of energy functions and their 
influence on docking efficiency. We conclude the first section with a summary of 
the simple molecular mechanics energy functions found to provide optimal docking 
efficiency and selectivity. 

In Section 3 of this chapter, we explore the question of the influence of the 
receptor on the conformation of the bound ligand. W e first note that the concept of a 
single static ligand conformation in the receptor pocket does not adequately account 
for the dynamic character of the ligand-receptor interaction. This consideration also 
leads us to the idea of "anchor points" within a ligand, atoms or groups that show 
the least motion and have the largest interactions with the receptor in the complex. 
We then go on to show that when appropriate descriptors are chosen to represent 
the ligand, i.e., the anchor points, that its lowest free energy solution conformation 
is in good agreement with that found in the ligand-receptor complex. In this study 
we examine ten different ligands in solution and their associated receptors. Our 
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findings presented in this section suggest that in the development of pharmacaphore 
maps from families of ligands in the absence of information about their receptor 
structure it is essential to use a "blurred" description of atomic details and focus 
instead on functional anchor points. 

Drug resistance is a growing problem in the treatment of many diseases that 
affect us in modern times. Thus an understanding of the atomic basis of resistance 
is a first step toward the development of compounds that are resilient to resistance. 
One particular area of resistance that is of significant social concern is that 
associated with the H I V I virus. In this system many of the compounds that have 
been used to reduce virus levels in infected individuals are of limited use when used 
as the sole antiviral agent. Thus the development of methods and the study of drug 
resistant compounds is a critical element in fighting diseases such as A I D S . In 
Section 4 of this chapter we describe a modest first step toward our search for the 
atomic origins of resistance. We present a study that considers the binding of a 
single common ligand to both the HTV I protease and the analogous protease from 
the feline version of the virus, FTV protease. The FTV protease differs from HTV in 
a number of ways that are common to resistance-evolved proteases of HTV I, and 
thus serves as a model system for our examination of differential ligand-receptor 
interactions. Our efforts in this section focus on (i) the exploration of efficient and 
accurate ways to develop ensembles of ligand-protease complexes to permit a more 
statistically based study of ligand-receptor affinity and (ii) the development of a 
"free energy approximator" built up from computationally undemanding protocols, 
e.g., assessment of protein and ligand energies with conventional molecular 
mechanics potentials and inclusion of solvent effects with continuum-based 
Poisson-Boltzmann (PB) techniques. In this study we find that the major 
determinant of the difference in binding affinity between a peptide mimetic inhibitor 
of H I V / F I V binding to these two proteases is the ligand's internal strain. We 
suggest that differences in protein-ligand interactions can be "redistributed" 
throughout the protein-ligand interface by small adjustments of protein-protein 
interactions, whereas different degrees of "crowding" of the ligand wi l l be manifest 
in the energy of the ligand. We also examine the role of individual residues, that 
differ between proteases from the two species, in differentiating the ligand and note 
one Asp to He difference that appears not to be fully compensated for. 

The free energy difference between a ligand and receptor in their unbound 
conformations and in their bound conformations is the ultimate "discriminator" in 
relative binding affinity assays. Thus, the screening of ligands against a common 
receptor should be based as closely as possible on this free energy difference. In the 
final section of the chapter we describe our developments of the new ^-dynamics 
approach to free energy calculations and ligand-receptor screening. We provide an 
overview of the formalism and show how it may be exploited as a free energy 
based technique for the screening of ligands for a common receptor in a time that is 
faster than conventional free energy calculations. We demonstrate the ^-dynamics 
approach by considering a series of para-substituted benzamidine derivatives bound 
to the protein trypsin. The application of this methodology to the simultaneous 
calculation of free energy changes of ligands binding to a common receptor 
illustrates how ^-dynamics provides an efficient means of both free energy-based 
screening and more conventional free energy calculations. 

2. Optimizing an energy function for ligand-receptor docking 

We begin by discussing one of the more familiar computational approaches to 
rational drug design, that of ligand-receptor docking. The interactions of ligands 
with their biological receptors determine the process of molecular recognition. In 
computer assisted drug design, molecular recognition is modeled using docking 
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algorithms, which predict the structure of the ligand-receptor complex from the 
structures of free ligand and free receptor (2). There are many approaches to the 
docking problem (2-10). In rigid docking (10), both receptor and ligand are treated 
as rigid bodies, following the lock and key mechanism of binding (77). In the 
majority of flexible docking approaches, ligands only are allowed conformational 
flexibility (9). Of course, in reality both protein and ligand may be flexible, as 
embodied in the induced fit model of binding (72). 

A successful docking algorithm requires a good scoring/energy function and 
a good search/optimization algorithm. Both are essential components. A good 
scoring function should be selective, i.e. able to distinguish the correct solution (the 
crystal structure of the ligand-receptor complex) from all others. It should also be 
efficient. B y this we mean that the potential energy surface should not have too 
many large barriers and thus should be amenable to rapid searching, so that a given 
search algorithm can quickly find the correct solution. In this section we present a 
systematic way to design a molecular mechanics scoring function for a flexible 
docking algorithm. We allow ligand flexibility and treat the receptor as a rigid body. 
The idea behind this choice is to illustrate the scoring function design process for 
the simpler case where the sampling problems are almost nonexistent. Simulated 
annealing molecular dynamics (MD) is used as the search strategy. 

2.1 Optimization. To optimize the selectivity and efficiency of a scoring 
function we use a test system comprising five protein-ligand complexes. 

HO 

Benzamidine Phosphocholine Sialic acid 

© 

Glycerol 3-phosphate 

The complexes include a small rigid ligand in an open active site, 
benzamidine/trypsin (PDB code 3ptb) (73), flexible ligands in open active sites, 
phosphocholine/FAB McPC-603 (PDB code 2mcp) (14) and sialic 
acid/hemagglutinin (PDB code 4hmg) (75) and flexible ligands in relatively 
inaccessible active sites, glycerol 3-phosphate/triose phosphate isomerase (PDB 
code 6tim) (76) and biotin/streptavidin (PDB code lstp) (77). We believe that these 
ligand-receptor complexes are sufficiently diverse to allow us to draw general 
conclusions about the selectivity and efficiency of an energy function. 
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For protein receptors, the parameter set was based on C H A R M M 
paraml9/tophl9 topology and parameter libraries (18). For the ligands, the charges 
were generated by the template method in Quanta with smoothing of charges over 
all atoms. For the nonbonded interactions, a switching function for the van der 
Waals (vdW) and electrostatic interactions (18) was used. In order to restrain the 
ligand to the neighborhood of the active site, a harmonic restraining potential was 
applied. It acted only when the center of geometry of the ligand was further than 
11A from the center of the active site. The restraining potential was implemented 
through the N O E module in C H A R M M . 

Our scoring function for docking comprises the C H A R M M receptor-ligand 
interaction energy and the ligand self energy. In our optimization we modify the 
nonbonded interaction parameters. In particular, we examine different nonbonded 
truncation parameters (with three values of 8A, 9 A and 10A), different models for 
electrostatics (distance dependent dielectric, constant dielectric and Poisson-
Boltzmann (PB) solvation based on the electrostatic field generated by the protein), 
different dielectric constants (e = 1, 2, 3, 4), the reduction of surface side chain 
charges and changing the hard core vdW potential to a soft core. 

The reduction of the charges of the surface side chains is implemented as 
follows: 

C = 1 - protein 

tripeptide J (1) 

where Cnew is the reduced charge of the side chain atom, Sprotein is the surface 
exposure of side chain X in the protein, Stripeptide is the surface exposure of this side 
chain in a G L Y - X - G L Y trans tripeptide and C is the original charge of the side 
chain atom. The modification of the vdW interaction involved the reduction of vdW 
interactions at = 0.8cr for the initial annealing stage and was implemented 
through: 

F = 
^VDW 

1 
12A„ 6B„ 

(fa,) 1 3 ( f cV'J 

DŴj) = ̂  

(f<7y " Ty) + EVDW(f<7ij) I TQ < fCjj 

4J 
jvv(r*,r* ,r*ff) ; x{] > fa.. 

(2) 

where EVDW is the vdW energy, A{j and Btj are non-bonded parameter, sw is a 
switching function, is the mean of the vdW radii of atoms i and j and rtj is the 
distance between atoms i and j. This equation is discussed in greater detail in 
Brooks et al. (18). The essence of this modification is that for distances shorter than 
fa{j the force acting on atoms / and j is the same as at/o^. In other words, the vdW 
interaction from/cr is a linear function of r». / i s the fraction of o~ that the soft core 
potential starts at (0.8 in most applications). The modification makes the vdW 
repulsion very small (the maximum value is on the order of hundreds of kcal/mol) 
and the resulting conformational transition barriers are much smaller than with the 
original vdW potential. A similar modification is made to the electrostatic potential 
and forces. A l l combinations of the modifications were examined, giving a total of 
3*4*2*2*3 = 144 tested potentials. 

2.2 Optimizing selectivity. The first stage of designing a good scoring 
function for docking is the optimization of selectivity, that is, the ability to 
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distinguish the docked structures from mis-docked ones. Docked structures are 
defined as structures consistent with the crystallographic conformation, within a 
root mean square deviation (RMSD) of 2k. Mis-docked structures have a R M S D 
greater than 4 A from the Brookhaven Protein Data Bank (PDB) (79) structure of the 
complex. The selectivity of the scoring function is evaluated based on the separation 
of the energy distributions for docked and mis-docked structures for five protein-
ligand complexes. The scoring function is analogous to those used in protein 
folding parameter design (20), sequence design studies (27, 22) and inverse folding 
approaches (23-25), in that energies are converted to Z scores (26) to account for 
the nature of the energy distribution: 

(E-E) 
Z(E) = ± 

G (3) 

where E is the average energy of the distribution and a is the standard deviation. 
Selectivity is measured using the function, 

j r l k ^ L ~ 4 . . ) / , < z k < Z U ; Wij * 0 

IV 1=1 i=l 
N 

(4) 

where j refers to the parameter set (j' = 1, 144), i refers to the complex (i = 1, 5) 
Zll

D and zii

Mm are the minimum Z scores for the docked and mis-docked 
conformations respectively. / . is the fraction of the docked structures whose Z 
scores are lower than those of the mis-docked structures. N is the number of 
complexes - in our case study N = 5. The score is zero for a parameter set if, for 
any complex, the lowest Z score of mis-docked structures is less than the lowest Z 
score of the docked structures. A lower score corresponds to a better selectivity. 

2.3 Optimizing efficiency. The efficiency of a scoring function is defined 
as the mean number of docked structures per unit of time and is averaged over five 
protein-ligand complexes, 

SE,= 
^S(4<2+o-5(4<3-4<2)); fl f , i < 3 * 0 

i=l 
N 

; I K < 3 = ° 
(5) 

where / . indicates the fraction of structures for parameter set j with RMSD less 
than a A a n d time is the total computer time used for docking of all five ligands to 
their respective receptors. A l l timings and fractions of docked structures utilized the 
same annealing schedules with 108,000 energy evaluations. The score is zero for a 
given parameter set i f for any complex^. < 3 is zero. 

2.4 Selectivity. The selectivity of the scoring functions was computed based 
on a library of docked and mis-docked structures generated by MD simulated 
annealing with ten randomly chosen scoring functions. For each receptor-ligand 
complex, there were 400 orientations of the ligands, with roughly a 50:50 mix of 
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docked and mis-docked structures. For each ligand position, the score was 
computed as the ligand-receptor interaction energy plus the ligand self-energy. 
Table I presents the 22 potentials out of the 144 possibilities that had non-zero 
selectivity. The most selective potentials have a distance dependent dielectric, short 
(8A) nonbonded truncation cutoffs and hard core vdW interactions. The advantage 
of the regular vdW interactions over soft core vdW arises from the fact that tight 
packing in the active site is favored over other binding sites much more with a hard 
core potential than with a soft core potential. In false binding sites there is often 
looser packing, which a soft core potential tends to favor, as it imposes fewer 
constraints on shape complementarity. 

Table I. Ranking of parameter sets, based on selectivity 
Rank Efficiency 

SG 
Energy 

gapa 

Solvation 
modelb, e 

Reduce surface 
side chain 
charges ? 

vdvV 
soft 

core ? 

Non-bonded 
cutoff (A) 

1 -0.78 -10.2 rdie, 3 Y E S N O 8 
2 -0.77 -9.6 rdie, 4 Y E S N O 8 
3 -0.72 -9.4 rdie, 4 N O N O 8 
4 -0.70 -11.4 rdie, 2 Y E S N O 8 
5 -0.67 -9.8 rdie, 3 N O N O 8 
6 -0.45 -10.0 rdie, 2 N O N O 8 
7 -0.36 -5.9 rdie, 3 N O Y E S 8 
8 -0.35 -5.4 rdie, 4 N O Y E S 8 
9 -0.35 -5.9 rdie, 3 Y E S Y E S 8 
10 -0.33 -5.1 rdie, 4 Y E S Y E S 8 
11 -0.31 -6.4 rdie, 2 Y E S Y E S 8 
12 -0.26 -5.9 rdie, 2 N O Y E S 8 
13 -0.23 -4.7 rdie, 2 N O N O 10 
14 -0.22 -3.5 rdie, 4 Y E S Y E S 10 
15 -0.22 -4.5 rdie, 2 Y E S N O 10 
16 -0.21 -3.6 rdie, 4 N O N O 9 
17 -0.21 -3.5 rdie, 4 Y E S N O 9 
18 -0.17 -3.4 solv, 4 Y E S N O 10 
19 -0.16 -4.0 solv, 4 Y E S Y E S 8 
20 -0.13 -4.8 rdie, 1 Y E S N O 10 
21 -0.09 -5.6 rdie, 1 Y E S Y E S 8 
22 -0.04 -3.5 rdie, 1 N O N O 10 

aEnergy gap between the correctly docked structure of lowest energy and the 
minimum energy mis-docked structure. Solvation model: rdie - distance dependent 
dielectric constant, cdie - gas phase, solv - continuum solvation contribution with 
constant dielectric; e is the value of dielectric constant (the distant dependent 
dielectric is given by er). 

Short nonbonded truncation favors the specific close interactions in the 
binding pocket over the more delocalized interactions in other nonspecific binding 
sites. Most highly selective potentials benefit from reducing the side chain surface 
charges, because most false binding sites are located on the receptor surface. Thus, 
reducing surface interactions favors active site structures. In addition, a distance 
dependent dielectric is almost always present in the highly selective potentials. 
Neither a constant dielectric nor an approximate continuum solvation model are 
desirable for the discrimination of docked conformations from mis-docked ones. 
The poorer selectivity of the set with approximate solvation may be understood in 
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terms of the energy gap between the docked and mis-docked structures, which is 
reduced due to the smaller solvation penalty at the surface sites. On the other hand, 
a constant dielectric without any account of solvation effects exaggerates the 
electrostatic contribution and diminishes the influence of tight packing in the active 
site. 

2.5 Efficiency. To test the efficiency of the docking potentials, we selected 
nine parameter sets from Table I (ranks 1-2, 7-11, 14 and 19). For each parameters 
set, 20 ligand replicas were subjected to simulated annealing M D , utilizing the 
multiple copy simultaneous search method (27). Initial conditions were the same for 
each parameter set, as were the cooling schedules, which involved an annealing 
from 700K to 300K in 100 picoseconds (ps) followed by a second annealing from 
500K to 300K in 100 ps and subsequent quenching from 300K to 50K in 16 ps. 
Table II shows the ranking of the tested nine parameter sets based on efficiency. 

Table II. Comparison of docking for different parameter sets 
SE f a 

A<3,a 
SG fo Solvation Reduced vdW soft N [on-bonded 

Rank score 
f a 

A<3,a score 
fo 

model side chain core ? cutoff (A) 
charges ? 

1 0.039 0.55 -0.35 0.45 rdie, 3 Y E S Y E S 8 
2 0.038 0.53 -0.33 0.44 rdie, 4 Y E S Y E S 8 
3 0.038 0.55 -0.35 0.45 rdie, 4 N O Y E S 8 
4 0.038 0.53 -0.36 0.46 rdie, 3 N O Y E S 8 
5 0.036 0.52 -0.31 0.44 rdie, 2 Y E S Y E S 8 
6 0.025 0.36 0.0 0.25 solv, 4 Y E S Y E S 8 
7 0.022 0.56 -0.23 0.39 rdie, 4 Y E S Y E S 10 
8 0.00 0.32 -0.77 0.76 rdie, 4 Y E S N O 8 
9 0.00 0.22 -0.78 0.77 rdie, 3 Y E S N O 8 

aAverage fraction of structures with R M S D from crystallographic complex less than 
3 A on all heavy atoms. bFraction of docked conformations with lower energies 
than the best mis-docked conformations. 

It is apparent that a soft core vdW potential is necessary for the efficient 
docking for all five complexes. This is because two receptors, streptavidin and 
triose phosphate isomerase, have rather inaccessible active sites. For the other 
complexes, where the active sites are more accessible, the efficiency does not 
strongly depend on the form of the vdW potential. We find that the most selective 
potentials are not the most efficient. The most efficient potential seems to be a 
distance dependent dielectric with e = 3, reduced surface charges, soft core vdW 
and an 8 A nonbonded truncation. Most potentials with soft core vdW have similar 
docking efficiencies, however shorter nonbonded cutoffs lead to lower 
computational times and thus better efficiency. The most efficient docking potential 
is reasonably selective, with a fair separation of docked from mis-docked 
structures. This is shown in Figure 1, where the energy histograms for the most 
selective potential and the most efficient potential are shown. We select the best 
docking potential as the most efficient one, as it has an acceptable separation of 
energy distributions. 
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10 0 10 20 
Relative energy (kcal/mol) 

40 

Figure 1. Energy distributions for the docked (solid lines) and mis-docked 
(dashed lines) conformations averaged over five complexes. Energies are 
relative to the minimum energy of the mis-docked structures. Upper panel: the 
most selective parameter set (Rank 1, Table I). Lower panel: the most efficient 
parameter set (Rank 1, Table II). 

2.6 Optimal energy functions for docking. W e have examined a number 
of potentials that discriminate correctly docked structures from mis-docked 
structures. The most discriminating potentials have short nonbonded cutoffs, a 
distance dependent dielectric (with e = 3 or 4), reduced surface charges and regular 
(hard core) vdW potential. Potentials with soft core vdW are less discriminating. 
We found that soft core repulsion was critical for the kinetic accessibility of the 
binding site. In receptors with relatively small entrances to the active site, the use of 
the regular vdW potential precludes ligands from entering in a reasonable amount of 
time. For receptors with closed active sites, such as H I V protease, soft core 
potentials wi l l be essential for successful efficient docking. In general, the most 
selective scoring functions may not be the best scoring functions for docking. 
Thus, we see a separation of kinetic and thermodynamic effects. In contrast to a 
commonly held belief, we show that M D can be successfully used when paired 
with a smooth energy surface that has a clear global minimum. While our approach 
remains to be extended to allow receptor flexibility, we have demonstrated the 
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general guidelines and ideas that can be used to develop a scoring function for any 
docking problem. 

3 . Ligand conformation in the active site and in free solution 

In this section we step back and re-visit one of the fundamental assumptions 
underlying much of rational drug design by addressing the question: How similar is 
the conformation of an unbound ligand to its bound conformation? The construction 
of pharmacophore models (a pharmacophore is a spatial arrangement of atoms that 
may give rise to a biological activity) is a key process in computer assisted drug 
design (28-30). In pharmacophore mapping techniques (2, 31-33) the assumptions 
are often made that (i) there exists a commonality between isolated structures of 
ligands (2) and (ii) their low energy solution structures are similar to the 
conformations they adopt in the receptor binding site. The importance of this 
similarity extends beyond the scope of computer assisted drug design to questions 
related to the physics of binding. For example, how does a receptor deform the 
solution structure of a ligand? Is the lock and key mechanism (77) a good 
approximation? There have been a number of attempts to relate the structures of 
isolated ligands to their receptor bound conformations (34, 35). It has been 
concluded from these studies that "... any local minima identified for the isolated 
state are of little or no relevance for the situation in a protein" (34). 

Here, we present another view of similarity between the conformations of 
small ligands free in solution and in receptor complexes. We investigate a principal 
assumption underlying pharmacophore mapping, namely that conformations of the 
isolated ligands are relevant to binding, but we do not address the topic of 
pharmacophore identification without knowledge of the receptor. The concept of 
similarity should take into account the flexibility exhibited by some ligands in active 
sites, which may be quantified by simulation. With this in mind, we examine two 
metrics of similarity. First, we compare the low energy solution structures of a 
ligand to the family of conformations observed in the active site, with similarity 
identified by values of torsion angles. Secondly, we examine similarity defined in 
terms of the spatial orientation of anchor points (key atoms responsible for binding) 
in the low free energy solution structures and in the active site conformations. 

3.1 Assessing similarity metrics. W e tested the two similarity metrics on 
ten protein-ligand complexes, the four flexible complexes used in die previous 
section (i.e. not the benzamidine-trypsin complex) and an additional six complexes: 
tricarballylic acid (bound to aconitase), Ile-Val (bound to pancreatic trypsin 
inhibitor), Gly-Tyr (bound to carboxypeptidase A ) , Val-Trp (bound to 
thermolysin), chloramphenicol (bound to chloramphenicol acetyltransferase), and 
N-phosphoryl-L-leucinamid (bound to thermolysin). The ligands vary from 
dipeptides and peptide-like molecules to small flexible organic molecules. The 
number of important rotatable bonds in these ligands varies from two to five, where 
rotation about an "important" rotatable bond is defined as involving the rotation of 
at least one other torsion. The anchor points (shown as gray circles) of a ligand 
were identified as those atoms with the largest contribution to the interaction energy 
with the receptor, based on simulation results. Each ligand was divided into 
functional groups. Within each functional group, anchor points are the heavy atom 
(or atoms) with higher than average interaction energies per atom. Anchor points 
are also characterized by low mobility. Some functional groups, in which none of 
the atoms interacted strongly with the receptor, have no anchor points assigned. 
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Val-Trp Chloramphenicol N-phosphoryl-L-leucinamid 

For all peptidic ligands we use the polar hydrogen C H A R M M paraml9 
parameter set (18). The force field parameters for nonpeptidic ligands are obtained 
by the template method in Quanta. The active site families of ligands were generated 
by one hundred iterations of room temperature M D simulation of 75 ps with a rigid 
receptor. A distance dependent dielectric with e = 2 was used. The resulting 100 
structures were miriimized by 1000 steps conjugent gradient and subsequently 
clustered by a hierarchical agglomerative method (36) based on the torsion angle 
metric and the anchor point distance metric. Representative structures from solution 
were generated by a systematic search (33), sampling important rotatable bonds in 
15° increments. The resulting structures were minimized using 1000 steps of 
conjugent gradient minimization and then clustered based on the two metrics. 
Clustering reduces the number of structures by roughly 500 fold. The largest 
number of individual structures was 316,954 for biotin, which was reduced to 270 
representatives. The free energy was calculated based on the population of a cluster 
(the entropic contribution) and the solvation and internal energy of that structure that 
was closest to the geometric cluster center, 

^ = EsolVtPB + E.m-kBT\nN 

(6) 

where A is the free energy of a cluster, EsolvPB is the solvation free energy of a 
cluster center calculated using the finite difference P B equation (37), Eint is the 
internal free energy of a ligand, kBT =0.6 kcal/mol and N is the population of a 
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cluster. For continuum solvation calculations a grid size of 0.4A was used with an 
interior dielectric of 2. 

The next step is to rank the clusters based on their free energies. For each 
ligand, cluster representatives from solution are compared to cluster representatives 
from the active site. For all solution cluster representatives within the clustering 
radius (15° for the torsion angle metric, 0.5A for the anchor point distance metric) 
from an active site representative the one of lowest free energy is taken as the 
solution structure. As cluster representatives are selected based on energies 
calculated with a distance dependent dielectric and not on the P B solvation energies 
(38), all structures with free energies within 3 kcal/mol of the minimum free energy 
cluster are considered to be of equal free energy. 

3.2 Comparison of similarity metrics. Table III presents results of a 
comparison of the lowest free energy structures in solution similar to (i.e., 
belonging to the same cluster as) the active site conformations as judged by the 
torsion metric. 

Table III. Results for the torsion angle metric 
Ligand A A a Population 0 

chloramphenicol 0.0 0.451 
N-phosphoryl-L-leucinamid 3.0 0.005 

phosphocholine 0.3 0.238 
tricarballylic acid 5.9 0.000 

biotin 4.5 0.000 
glycerol 3-phosphate 2.8 0.009 

Be-Val 4.4 0.001 
Gly-Tyr 7.7 0.000 
Val-Trp 9.0 0.000 

sialic acid 5.7 0.000 
Tree energy difference (in kcal/mol) between the lowest free energy solution cluster 
and the lowest free energy solution cluster most similar to any of the active site 
clusters. Population (based on Boltzmann probability at 300K) of the lowest free 
energy solution cluster similar to any active site cluster. 

In only four out of ten cases do the ligands in free solution populate the torsions 
that are the same as those of the ligand in the active site conformation. Thus, in 
agreement with Bohm et al (34, 35), we conclude that low energy solution 
structures of small, polar ligands do not have similar torsions to their active site 
conformations. In general, solution search strategies aiming to provide exact values 
of torsions for the active site conformations wi l l not be successful. 

Table I V shows the comparison of low energy structures for ten complexes 
having the same position of anchor points as the active site ligand conformations. It 
is apparent that for nine out of ten complexes the positions of the anchor points in 
the lowest free energy solution structures are similar to their positions in the crystal 
structure of the complexes. This observation may well also hold for larger ligands, 
but this remains to be verified. Based on the results from Table IV we find support 
for the hypothesis that "there is a strong similarity between the positions of anchor 
points (atoms responsible for tight binding with the receptor) of the ligand in 
solution and in the active site". 
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Table IV. Results for anchor point distance metric 
(notation as in Table III) 
Ligand A A Population 

chloramphenicol 0.0 0.761 
N-phosphoryl-L-leucinamid 1.1 0.129 

phosphocholine 0.0 1.000 
tricarballylic acid 0.0 0.998 

biotin 2.7 0.006 
glycerol 3-phosphate 0.0 0.956 

De-Val 0.0 0.998 
Gly-Tyr 0.0 0.752 
Val-Trp 0.6 0.198 

sialic acid 6.5 0.000 

3.3 Bound and Unbound Conformations of Ligands are Similar. 
This similarity has a number of implications. Firstly, receptors may change the 
solution structure of ligands that bind to their active sites, however the majority of 
changes occur in regions that contribute less to binding interactions. The positions 
of atoms responsible for tight binding seem to be very similar in low energy 
solution structures and in the active site of the receptor. Thus, receptors may bind 
ligands for which the positions of these points match up with key active site atoms. 
The similarity between low energy solution structures and active site ligand 
conformations strongly supports current efforts to build pharmacophore models 
based on solution structures and finding commonalities in position of key atoms in 
a series of ligands binding to a given receptor. 

4. Binding Specificity of HIV and FIV Proteases 

In the following two sections we focus on more detailed analyses of binding 
specificity. Drug resistance in bacterial pathogens has many concerned about a 
"post-antimicrobial age" (39). Many potent drugs against viral pathogens, such as 
H I V , have been rendered ineffective (40-42). Drug resistance may be acquired 
through a variety of mechanisms, one of which is the evolutionary modification of a 
drug target that significantly reduces the efficacy of an inhibitor while maintaining 
sufficient activity to survive (40, 43, 44). Understanding the mechanism of this 
process is an important goal. The problem may be posed as: What is the basis of 
ligand binding specificity among closely related protein targets? 

We are working to understand the energetic details of this problem by 
studying proteases from Human Immunodeficiency Virus (HTV) and Feline 
Immunodeficiency Virus (FTV). This model system embodies the properties of 
strong homology and distinct specificity observed in drug resistant systems. The 
feline has also been demonstrated to exhibit symptoms similar to those seen in 
human subjects with the analogous infection. Because of this, it is hoped that a 
more thorough understanding of the F I V infection and viral components may lead 
to a viable animal model for A I D S . The F I V model system is useful both in 
understanding the mechanisms of binding specificity, as observed in drug resistant 
HTV strains, as well as developing an animal model for AIDS that may enhance the 
search for novel and effective therapies. 

HTV protease and FTV protease are closely related enzymes that demonstrate 
altered specificity (45, 46). We have studied the energetic and molecular origin of 
this specificity. fflV protease is a primary target for AIDS therapy, the other 
important target being reverse transcriptase. The function of H I V protease within 
the virus is to cleave a poly-protein synthesized by the infected cell's machinery 
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using the reverse transcribed R N A genome from H I V (47). During or following 
cleavage of this poly-protein, the new infectious viral particle is formed. Inhibition 
of the H I V protease prevents the formation of infectious virions (48) and halts the 
progression of the disease. H I V protease is a homodimer, with each monomer 
containing 99 amino acids. The active site, which has C2 symmetry, is at the 
interface of the two monomers (49). Two aspartate groups, one donated from each 
monomer, form the fundamental catalytic unit (50). 

4.1 Homology and Specificity. FTV protease is homologous to H I V 
protease, as reflected in its similar function, structure, and sequence. Structurally, 
the backbone positions overlap very well, particularly in the active site where the 
R M S D of the a-carbon atoms is approximately 0.5A (46). The amino acid sequence 
within the active site of FTV protease is 42% identical to the active site in HTV 
protease. However, despite the strong homology between FTV and fflV protease, 
FTV protease is highly specific for its own natural substrates and designed 
inhibitors (45, 46). H I V protease inhibitors and substrates are barely functional 
within the FTV protease environment, while H I V protease can cleave FTV protease 
substrates although at slower rates (45). FTV protease also requires a longer 
substrate than H I V protease, indicating that the feline enzyme is more specific, 
since it requires more of its subsites to be occupied (45). 

We investigate the origin of specificity of the H I V and F I V proteases by 
examining a model system involving a common inhibitor, L P 149 bound to the two 
enzymes. This inhibitor exhibits specific binding thermodynamics with respect to 
these two enzymes and there is a crystal structure of L P 149 bound to FTV protease 
(46). A major challenge in our investigation is that no crystal structure exists for 
L P 149 bound to H I V protease and we must generate a reasonable model for this 
complex. We then use an empirical binding free energy partition to determine the 
energetic basis for binding specificity between H I V and F I V protease in complex 
with a common inhibitor: L P 149. 

4.2 Modeling HIV-LP149 complexes. The first step was to generate 
reasonable ensembles of HTV protease complexed with L P 149. H I V protease 
adopts one of two conformations depending on whether or not a ligand is bound. In 
the unbound state the two "flap" regions, each consisting of two p-strands 
connected by a hairpin loop, are open, making the active site more accessible to the 
environment (57). In the bound state these flaps are closed and, in most cases, 
connected to the ligand through a tetra-coordinated water molecule. Since the 
backbone conformations of H I V protease molecules in complex with ligands are 
highly similar, we build a model of HTV protease complexed to a novel inhibitor by 
starting with the canonical closed backbone conformation of H I V protease and 
modifying the positions of the side chains to accommodate the new inhibitor. Such 
restraints were applied in both the HTV and FTV structure refinements. The 24 HTV 
protease complexes listed in Table V were extracted from the P D B and their native 
ligands removed. 

Table V . PDB accession codes of HIV protease complexes 
laaq, ldif , lhbv, lhef, lheg, lh ih , lh iv , lhos, lhps, lhpv, lhpx, lhte, lhtf, 

lhtg, l h v i , lhvj , lhvk, l h v l , 5hvp, 9hvp, lhvr , lhvs, 4phv, lsbg 

A l l complexes have approximately the same backbone conformation and different 
side chain conformations. These structures are used as starting positions in the 
search for a new conformation bound to L P 149. The inhibitor is docked in the 
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active site using a least squares fit of the F I V protease complex backbone with each 
HTV protease closed conformation. The starting conformation of the inhibitor is the 
same in the F I V crystal structure and HTV protease models. The HTV protease 
complex models and the F I V crystal structure are minimized under successively 
reduced harmonic restraints to remove aberrant vdW clashes, while perturbing the 
rest of the structure as little as possible. 

In order to equilibrate the side chains in the presence of the new inhibitor, a 
simulated annealing approach (52) utilizing the C H A R M M package (18) is 
employed. The 24 fflV protease models are annealed at 1400K for 6 ps and cooled 
from 1400K to OK over 84 ps to allow the side chains to adjust to L P 149 within the 
active site. In order to generate a comparable ensemble of structures, the FTV 
protease crystal structure is subjected to the identical protocol using 24 distinct 
initial conditions. A weak harmonic restraint, inversely proportional to the B-factor, 
is placed on backbone atoms to permit significant movement at high temperatures 
while guiding the backbone to the initial canonical conformation at the end of the 
simulation. The resulting structures are minimized under the same conditions to 
bring each complex to the closest local minimum. 

This protocol was validated using H I V protease complexed with indinavir 
(PDB accession code lhsg). The structures resulting from HTV protease complex 
models and those resulting from the original crystal complex were highly similar 
both structurally and energetically (Table VI) . Thus, our protocol, tested on the 
HTV/indinavir complex, is demonstrated to produce models of similar quality as the 
original, known, crystal structure when it is subjected to the same refinement 
procedure. 

Table VI. Structural and Energetic Comparison of Models 
of the HIV Protease-Indinavir Complex Based on 

our Protocol and Derived from the Crystal Structure 
Component Model Crystal Structure 

Mean R M S D from Crystal 1.19 A 1.08 A 
Mean Interaction Energy -92kcal -96 kcal 

Mean PB Energy 23kcal 24 kcal 
Mean Internal Energy 41kcal 40 kcal 
Mean Cavity Energy 1.5kcal 1.6 kcal 

Total Energy -28 kcal -29 kcal 

4.3 Energy Function for Binding Energy Analysis. The ensemble of 
the complexes were analyzed using an empirical free energy function containing 
important energetic components of the binding free energy. The function includes 
the interaction energy between the ligand and the enzyme, the internal energy of the 
inhibitor, and the hydrophobic and electrostatic components of the solvation free 
energy. The interaction energy and internal energy are computed using the 
C H A R M M force field (18). The hydrophobic solvation energy was computed as a 
linear function of the surface area using a coefficient fit to experimental solvent 
transfer results for hydrocarbons (53). The electrostatic component of the solvation 
energy was computed by solving the finite difference approximation of the 
linearized Poisson-Boltzmann equation (37) using DelPhi. This function permits a 
detailed investigation of the energetic basis for binding specificity. Two of the 
terms, the interaction energy and the electrostatic solvation free energy, are linear 
terms that can be separated into atomic, and thus active site residue contributions. 
This enhances our ability to investigate the molecular as well as the energetic basis 
of binding specificity. 
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Some assumptions were employed in the energetic analysis in order to make 
the necessary calculations tractable. Since no crystal structure is available for the 
open state of FTV protease, an alternative reference state was chosen for the 
unbound conformation. We use the closed conformations of both H I V and F I V 
proteases in the absence of ligand to represent the unbound state. B y using this 
reference state, the change in the internal energy of the protein, which would be 
subject to intolerable errors using a modeled open conformation, is eliminated from 
the calculation. This choice of reference state also affects the solvation components 
of the energy function. The hydrophobic solvation energy term is small and very 
similar in both H I V and F I V protease and may be ignored. The P B solution term, 
accounting for the electrostatic component of the solvation free energy, is 
significant and may be under-estimated using this reference state. However, the 
same approximation is applied consistently to H I V and F I V protease and the errors 
arising from this approximation are assumed to cancel. Furthermore, we note that 
the use of the closed conformations for reference states is analogous to assuming 
that the change in each of the components of the binding free energy noted above is 
the same for H I V and F IV . 

4.4 Energetic Basis of Binding Specificity. Analysis of the 
distributions of the energy components for the H I V and FTV protease complex 
ensembles yielded an interesting and surprising result. The internal energy of the 
inhibitor seems to be the primary component responsible for the difference in 
binding specificity of L P 149 for H I V and F I V proteases. The other energetic 
components were similar for the H I V and FTV protease ensembles, whereas the 
internal energy showed a significant (14 kcal/mol) preference for the HTV complex. 
Table W shows the mean value of each energy component of the H I V and F W 
protease ensembles. 

Table VII. Energetic comparison of HIV and FIV 
protease-LP149 complexes 

Component H I V (kcal/mol) FTV (kcal/mol) 
Mean Interaction Energy -127 -121 

Mean P B Energy 25 24 
Mean Internal Energy -33 -19 
Mean Cavity Energy -1.6 -1.8 

Total Energy -134 -115 

The basis for the large difference in internal energy appears to be the ability 
of L P 149 to find a low energy conformation within the HTV protease active site 
starting from the higher energy conformer present in the F I V protease crystal 
structure. Crowding within a hydrogen-bonded ring structure (also present in the 
original crystal structure) seems to be a major component of the internal energy 
difference. The average per-atom contributions to the vdW component of the intra-
ligand energy are shown in Figure 2 along with a diagram of L P 149, illustrating the 
regions of high energy vdW interactions. Although most of the structural diversity 
appears to be within the terminal naphthalene rings, the only significant difference 
in the vdW component of internal energy results from the hydrogen-bonded ring 
structure in the P3 position. Although no obvious change in conformation is 
apparent, even in the HTV protease conformation the energy is neutral or slightly 
unfavorable. This suggests that this region of L P 149 is against a repulsive vdW 
wall , where the energy is proportional to r" 1 2, and a small change in the structure 
can result in a large change in energy. 
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This result is consistent with kinetic studies of FTV protease using H I V 
protease substrates. A series of H I V protease substrates, based on the same natural 
substrate as LP149, were investigated for kinetic properties within FTV protease 
(46). One substrate was distinguished by its high \^zJ¥^m as well as its significantly 
faster cleavage relative to HTV protease. This substrate contained a threonine 
substituted for the glutamic acid side chain analogous to the one in L P 149 critical 
for the strained hydrogen-bonded ring. 

8.0 I • i • 1 > 1 1 1 « 1 ' • — r — ' — 

6.0 -

Figure 2. Per atom vdW internal energy. Heavy line is HTV; thin line is F I V . 
Regions of significant difference are labeled A through E and are 
correspondingly indicated on the structure of L P 149. 

This result is also consistent with work published (54) while this 
manuscript was under review. This paper probed the S3 and S3 ' subsite 
specificities in F I V and H I V proteases using a variety of peptide-based competitive 
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inhibitors. The result was that small residues in the P3 and P 3 ' positions were 
significantly favored in FTV protease. This experimental study is complementary to 
our work where we have examined the energetics of HTV and FTV protease binding 
a single inhibitor. The conclusions reached by both methods are compatible: small 
sidechains would be favored in the P3 and P3 ' positions due to overcrowding in the 
S3 and S3 ' subsites of F I V protease. 

Although the total interaction and P B energy terms did not show a strong 
preference for the H I V or F I V protease structures, this does not preclude important 
differences at the level of individual residues. Significant differences in the average 
energy at the same relative backbone position in HTV and F I V protease could 
indicate sites important in conferring binding specificity. The active site residue 
interaction energy profiles for the H I V and FTV complex ensembles indicate that 
Asp 30 in HTV protease interacts very differently than the corresponding He 35 in 
FTV protease. As expected, this interaction is primarily electrostatic in the H I V 
complex, while a less favorable, primarily vdW interaction is observed in F I V 
protease. There is a significant difference between the mean interaction energy for 
this position in the two ensembles as well as a distinct separation between the 
distributions themselves. Based on this, we hypothesize that this position is linked 
to the specificity difference between H I V and FTV protease. 

The same position also demonstrates a strong separation between HTV and 
FTV protease ensembles in the context of the electrostatic solvation free energy. As 
expected, the desolvation penalty is much more severe for the aspartate in the H I V 
protease than the corresponding isoleucine in FTV protease. Again, the distinct 
energy distributions and significant difference in the mean values between the two 
ensembles suggests that this effect is not an artifact, but a real difference in the 
binding energetics of these two enzymes. Although the solvation penalty associated 
with the Asp30/De35 opposes the favorable interaction energy (Table V I E ) , it is not 
enough to cancel the affect and this position is expected to favor the HTV protease / 
LP149 complex. 

Table VIII. Interaction and electrostatic desolvation energy for the 
Asp30/Ile35 backbone position of HIV and F I V proteases 

Protein Interaction Energy (kcal/mol) P B Energy (kcal/mol) 
HTV Protease (Asp 30) -9.1 2.8 
FTV Protease (lie 35) -4.3 1.0 

A n understanding of binding specificity in closely related protein systems is 
an important goal for developing general principles of rational drug design and for 
understanding mechanisms of drug resistance. The HTV and FTV proteases embody 
the properties of close homology and distinct specificity, while also presenting the 
opportunity for understanding an important therapeutic target. The model developed 
here for understanding specificity within this system gives a surprising result, 
which is nevertheless consistent with experimental data. The further development of 
understanding how small changes in sequence can lead to dramatic differences in 
specificity may be crucial for neutralizing the threat of drug resistance. 

5. ^-Dynamics: A Novel Approach for Evaluating Ligand Binding 
Affinity 

A n integral part in the design of new therapeutics is the search for lead compounds 
and their subsequent refinement. Computational approaches that rapidly evaluate the 
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relative binding free energy of ligands to a common protein receptor play an 
important role in this process. Conventional free energy calculation methods, such 
as free energy perturbation (FEP) and thermodynamic integration (55, 56), evaluate 
the relative binding free energy of two ligands according to the following 
thermodynamic cycle: 

L0+R 

AG(solv) 

I^+R-

A G F T 

- ^ L Q R 

A G I 

AG(bind) 

L j R 

where L 0 and L j are the free ligands in aqueous solution. L 0 R and L , R are the 
corresponding ligands complexed with protein receptor R. The relative binding free 
energy of the two ligands, AAG(bind) = AG(bind) - AG(solv), is the difference 
between the relative free energy of the ligands in the complexed state and that of the 
free ligands. The free energy difference on each half of the thermodynamic cycle is 
calculated from the Hamiltonian, H(A,,x) = AHj(x) + (l-A,)H 0 (x). Simulations at a 
set of A, values (0 < X < 1) are performed to transform the initial state, "0", slowly 
to the final state, "1" . A free energy map along the coordinate X is thus constructed 
and the free energy difference between the end states is obtained. These methods 
have been successfully applied to assess the relative binding free energy of protein-
ligand systems (57, 55), but they are computationally expensive. A typical 
calculation could take days to weeks to complete, which is too long to be useful in 
the drug design process. 

Alternative methods based on favorable interaction are commonly used in 
drug design to approximate the free energy. Although such approaches are 
relatively rapid in evaluating compounds, they can be inaccurate since the entropy 
contribution to the free energy is ignored. Because of its importance in chemical and 
biological applications, the development of new methodology for free energy 
calculations is an area of active research. Recently a semiempirical method that uses 
the differences in the average ligand-environment interaction energies between the 
bound and free states and a linear scaling procedure has been developed and was 
applied to the binding of sulfonamide inhibitors to human thrombin with promising 
results (59). In the previous section, we described a continuum solvent based 
model to estimate relative binding free energies for a ligand binding to H I V and F I V 
proteases. While such empirical approaches are desirable, and can be useful, further 
development of methods based on more rigorous free energy methods is also of 
import. 

5.1 The ^-dynamics method. We have developed, from first principles, a 
free energy based approach to evaluate relative binding affinity. For a set of ligands 
and a common protein receptor, we construct the potential function of the system as 
the following (60): 
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V({A},(*)) = X # I K * ) - J ? ) 
(L A 

(7) 

Here is the interaction energy involving protein and ligand i, L is the total 
number of ligands, A f is the coupling parameter, Ft is the reference free energy or 
biasing potential. 

The dynamics of the system is governed by the extended Hamiltonian (60) 

H(W,x) = T+T{X] +y£%(vi(x)-Fi) 

(8) 

Here the As are treated as fictitious particles with masses mk and the method is thus 
called ^-dynamics. The free energy difference between molecules i and j, with 
reference free energy Fi and F. respectively, is given by: 

AAAij=AAi-AAj 

= - ± [ l n jdxexipi-IJV; (x) - pFj] + i [ ln J<fcexp(-/3V} (x) - j8Fj)] 

l l n P ( ^ = U ^ M t f } = 0) 

j8 P(A. = 1,{^.} = 0 
(9) 

where / ' (A. = l , A m s t | . = U} is the probability that the hybrid system is in a state 
dominated by molecule I, A is the Helmholtz free energy and p is \lkBT, where kB is 
the Boltzmann constant and T is temperature. Therefore the free energy difference 
between two molecules can be obtained from the ratio of the probabilities of the 
ligands in the X ^ l state. 

The Ardynamics method is able to evaluate the relative binding free energy 
of multiple ligands simultaneously: short simulations enable one to obtain 
qualitative ordering of the binding affinities, while longer simulations provide 
quantitative results. When designing pharmaceutical agents, one is interested in 
identifying, from a pool of slightly different compounds, those with favorable 
binding affinity. Generally, the detailed value of the free energy change is not of 
interest. When comparison with experiment is required, then more quantitative 
results are required. The ^-dynamics method can perform both tasks. 

5.2 Model system and simulation protocol. The system under study is a 
set of benzamidine inhibitors bound to trypsin. The inhibitors used are 
benzamidine, p-amino-benzamidine, p-methyl-benzamidine, and p-chloro-
benzamidine. C H A R M M version 22 parameter and topology files(7£) were used 
except for the charges of the inhibitors, which were derived from the Quanta charge 
template method and modified slightly to confer identical charges on invariant 
atoms. The hybrid trypsin-inhibitor system was capped with a 24 A sphere of 
TIP3P water (61) centered at the active site. The system was partitioned into a 
reaction region and a buffer region with a deformable boundary (62). The stochastic 
boundary M D method (63) was used throughout the simulations. A 30 ps 
simulation was performed before each calculation to allow the system to equilibrate. 
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The applications outlined in sections 5.3 and 5.4 demonstrate the use of X-
dynamics method for free energy calculations (64, 65). 

5 .3 Screening Calculations. In the screening calculations, where one is 
only interested in the ranking of the ligands, the reference free energy Ft in E q . (7) 
corresponds to the free energy of the unbound ligands in solution. Its value is 
precalculated. This may be easily done by methods based on continuum solvation 
models such as the Poisson-Boltzmann (66) and generalized Born methods (67, 
68). Since the reference free energy Ft is incorporated into the Hamiltonian of E q . 
(7), the resulting free energy change from the simulations according to E q . (8) 
gives the relative free energy change ( A A G ) , as was demonstrated in Eq . (9). The 
binding affinity is related to the probability of each compound to be in the X = 1 
state. Higher population indicates a more favorable binding free energy. Figure 3 
shows the running average of each X. 

1.0 

Time (ps) 

Figure 3. The cumulative X running average of benzamidine derivatives 
complexed with trypsin as a function of simulation time. 

Because the ligands all compete for the X = 1 state and do not remain at an 
intermediate value of X, the average value of X reflects the probability of being in 
the X = 1 state. The ordering of the ligands based on binding affinity is: 
benzamidine > p-amino-benzamidine > /7-methyl-benzamidine > p-chloro-
benzamidine. This ranking is clearly apparent after 50 ps of simulation time. 

A validation calculation using die standard F E P method gives the binding 
free energies relative to benzamidine, 0.4 kcal/mol for p-amino-benzamidine, 2.3 
kcal/mol for p-methyl-benzamidine, and 2.2 kcal/mol for /7-chloro-benzamidine. 
Although the binding affinity between benzamidine and /7-amino-benzamidine 
differs by only 0.4 kcal/mol, die ^-dynamics method clearly distinguishes the two 
ligands and provides the correct ranking. While this ranking differs from the 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
00

2

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



33 

experimental findings (69), the model calculations are converged using the F E P 
method and thus represent the correct answer for this model. Consequently, the 
screening calculations correctly reflect the relative binding affinities for our model. 
Additional simulations with different initial X coordinates and velocities were also 
examined and resulted in the same ranking, indicating that the ligands were not 
trapped in local minima. 

5.4 Precise Free Energy Changes. We also applied the Adynamics 
method to obtain the specific change in free energies for this system. In this 
situation, Fi is taken as a biasing potential. B y properly choosing [F], the barrier 
between different states along the reaction coordinates {X} is reduced and therefore 
one can completely sample the {A,} space within a single simulation. A n iterative 
procedure has been developed to improve sampling of the phase space and therefore 
make free energy calculations converge more rapidly (65). This procedure 
employed feedback from previous calculations to improve the bias of the current 

Figure 4. Potential of mean force along coordinate X between p-amino-
benzamidine (X = 0) and p-methyl-benzamidine (X = 1) in the unbound state. 
The barrier is reduced from 7 kcal/mol to 3 kcal/mol when a biasing potential is 
applied. 

simulation. The optimal estimate of these biasing potentials is achieved by the 
multiple reaction coordinate W H A M technique (70). In these calculations, biasing 
potentials are derived from constant values that correspond to the estimated free 
energy of each species. Figure 4 illustrates the free energy surface between p-
amino-benzamidine and p-methyl-benzamidine in the unbound state. The barrier 
between the two states decreases significantly when the biasing potential is applied. 
The calculations also converge rapidly. After the first iteration the free energy curve 
is already converged within statistical uncertainties. The simulation time is 150 ps 
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per iteration using the ^-dynamics method. While for F E P calculations, a total of 
240 ps simulation time (3 windows) was required to achieve similar precision. 

5.5 A Novel Approach for Evaluating Ligand Binding Affinity. In 
summary, the ^-dynamics method may be used either to identify rapidly ligands 
with favorable binding free energy or to obtain specific changes in free energy. 
Since it screens the binding free energy of the ligands instead of the interaction 
energy, it provides an accurate assessment of relative binding affinity. Species 
whose binding free energy differ by more than a few kcal/mol from the most 
favorable binder can be screened out within a few tens of picoseconds of 
simulation, because they wi l l not compete. In other words, they never reach the X = 
1 state. The total computation time is not expected to increase with the total number 
of ligands because only the few favorable binders are able to compete for the X = 1 
state. In contrast, conventional calculations of the relative binding free energy of 
two ligands would typically take hundreds of picoseconds of simulation time and 
increases with the number of ligands. Longer simulation, in combination with the 
iterative procedure, provides quantitative free energy changes. Although one can 
not generalize based on a single application, our results suggest that for detailed 
calculations where the specific change in free energy is required, the simulation time 
using ^-dynamics is about half of that using F E P . The efficiency could be further 
increased with improved biasing potentials. 
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Chapter 3 

New Free Energy Calculation Methods 
for Structure-Based Drug Design 

and Prediction of Protein Stability 

L u Wang, Mats A . L. Eriksson, Jed Pitera, and Peter A. Kollman 

Department of Pharmaceutical Chemistry, University of California, 
San Francisco, CA 94143 

We summarize some aspects of our recent studies of protein stability 
and protein-ligand interactions by a combination of several newly 
developed approximate free energy calculation methods and rigorous 
free energy calculation methods. The approximate free energy 
simulation methods employed in our studies include free energy 
derivatives (FED), pictorial representation of free energy changes 
(PROFEC) , chemical Monte Carlo/molecular dynamics simulation 
( C M C / M D ) , Poisson-Boltzmann continuum electrostatics/solvent 
accessible area (PB/SA) and generalized Born approximation/solvent 
accessible area (GB/SA) methods. The thermostability of T4 lysozyme 
and the binding free energies of HIV-1 reverse transcriptase inhibitors 
were analyzed as test cases. It is shown that these different approaches 
are complementary to each other and when combined, can make 
predictions efficient, comprehensive and insightful. Potential 
applications of this strategy in structure-based drug design and protein 
engineering are discussed. 

Calculations of free energies of ligand binding or protein stability can be very useful 
in drug design and protein engineering (1). The most rigorous approaches for 
calculating free energy changes, i.e., the free energy perturbation (FEP) or 
thermodynamic integration (TI) methods, have been limited in practical applications, 
due to their computationally intensive nature. Recently, there has been considerable 
interest in developing approximate, yet efficient free energy simulation methods. 
Notably, Aqvist et al (2) proposed the linear interaction energy approximation that 
correlates the binding free energies of ligands with their average interaction energies 
in protein and solvent. Radmer & Kol lman (3) developed the pictorial representation 
of free energy changes (PROFEC) which can suggest modifications of a ligand to 
increase its binding affinity. To quickly rank the binding affinities of a series of 
ligands, Pitera & Kol lman (4) introduced the chemical Monte Carlo/molecular 
dynamics ( C M C / M D ) technique and Kong & Brooks (5) have developed the X 
dynamics simulation method. The potential of using free energy derivatives (FED) in 
estimation of free energy changes (6,7) and analog design (8) has been explored. In 

© 1999 American Chemical Society 37 
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addition, Shen et al (9,10) advocated the Poisson-Boltzmann electrostatics/solvent 
accessible area (PB/SA) scheme for estimation of binding free energies of ligands. In 
general, these methods are much faster than F E P or TI and therefore more suited to 
practical applications. Due to their approximate nature, they may be less accurate. In 
this work, we tested some of these approximate methods in two cases. One is the 
thermostability problem of T 4 lysozyme (11). Another is the binding free energies of 
HIV-1 reverse transcriptase (RT) T I B O inhibitors (12). For T 4 lysozyme, we first 
used F E D and P R O F E C to suggest candidate modifications that may improve the 
stability of the protein and then analyzed an interesting qualitative prediction with a 
TI calculation. For the HIV-1 R T inhibitors, we first analyzed their binding affinities 
with the C M C / M D and P B / S A methods and later supported one of the results by TI 
calculations. A s a comparison, the solvation free energies of the ligands were 
calculated with both P B / S A method and the generalized Born approximation/solvent 
accessible area ( G B / S A ) method (13). For both cases, we found that the approximate 
methods gave quite reasonable results and therefore may be useful in practical 
structure-based drug design and protein engineering applications. 

Theory 

Thermodynamic cycles. The following thermodynamic cycle was used to assess the 
effect of a modification on the stability of T 4 lysozyme: 

A G u ^ f 

T4tf> <= T 4 ( « ) 

A G f ^ p U U A G U _ * U * (1) 

T4*(/) <= T4*(«) 
A G * u ^ f 

where T 4 and T4* stand for T 4 lysozyme and a further modified enzyme, "f" and "u" 
stand for the folded and unfolded states of the enzyme. Because free energy is a state 
function, we have 

A A G f o l d = A G * u _ ^ f - A G u _ f = A G f ^ f * - A G U _ ^ U * (2) 

where A A G f o l ( j is the folding free energy difference or stability difference between 
T4* and T4. Direct calculations of A G * u _ > f and AG u_»f are difficult due to the large 
conformational changes involved. Fortunately, AGf_>f* and A G U _ * U * can be readily 
determined by free energy calculation methods. 

The following thermodynamic cycle was used to calculate the relative binding 
affinity of two ligands, L i and L 2 , to die same protein, P: 

A G L i , b 
L i + P => L i * P 

A G L ^ L ^ U U A G L ^ L ^ p (3) 

L 2 + P => L 2 * P 
A G L 2 , b 

where A G L l y b ^ d A G t ^ b are the binding free energies of L i and L 2 . A G L ^ L ^ S 
A G L 1 _ > L 2 j P are the mutational free energies of L i ~ > L 2 in the solvent and in the 
protein, respectively. The difference in binding free energy between L i and L 2 , 
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A A G b , can be expressed as 

M G b = A G L 2 > b - A G L l > b = A G L l ^ L 2 , p - A G I ^ - I ^ (4) 

Similarly, direct calculations of A G ^ b and A G L 2 b are difficult, but A G L I - > L 2 , S ^ 
A G L l _ ^ L 2 , p 0 3 1 1 calculated from simulations. 

Free energy calculation with thermodynamic integration (TI) method. In this 
study, TI (1) was used to calculate the free energy changes. For the transformation of 
one state into another, a coupling parameter X is introduced and the Hamiltonians of 
the two states are defined as Ho (k=0) and H i (k=l). The free energy change of the 
transformation is expressed as the following integral (1) 

A G = j£< dH(k) I dk >A dk (5) 

where < dH(X) / dk >k is an ensemble average at A. In practice, a number of evenly-
spaced windows with different A. values ranging from 0 to 1 are chosen and at each 
window, < dH(X) / dk > x is calculated by averaging over molecular dynamics 
trajectories. The kinetic energy contribution can be neglected and A G is estimated by 

A G « 2 < BV(k)l dk >n AA (6) 
i 

where Xi is the X, value of the ith window and &k is the interval between successive 
windows. According to the trapezoidal approximation, corrections are made to the 
contributions of the first and last windows (multiplying by 0.5). V is the potential 
function that describes the atomic interactions in the system. 

Free energy derivatives (FED). The partial derivatives of free energy with respect 
to the nonbonded interaction parameters, qi, Ei and R i * , were calculated by the 
following equations (6,7): 

dGI dqt « {^*jl(*B^~ 1/ Vi(VcoulV)) (7) 

dGI dsi - ^2[l/(2Ei)]^ ^ 

= [ l / ( 2 s ; ) ] ( V L - / ( 0 ) ( g ) 

dGI dR* = ^ y { l 2 / /?*) [ ( i $ / * < / ) 1 2 - ( % j / R i j ) 6 } ^ (9> 

where <V C 0 U i ( i )> and <VL-XI)> are the mean Coulombic and Lennard-Jones 
interaction energies of the fth atom with the rest of the system. To analyze the change 
of a protein's stability due to modifications of the properties of its ith atom, according 
to equation 2, the free energy derivatives need to be calculated for both the folded and 
the unfolded states of the protein and their difference indicates the stability change. 
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Pictorial representation of free energy changes (PROFEC). The P R O F E C 
contour maps can be used to visualize how a protein's stability or a ligand's binding 
affinity changes when additional particles are added to a residue of the protein or the 
ligand (3). The contour map is generated by evaluating the insertion free energy of a 
test particle at various grid points near the residue of interest, using coordinates from 
molecular dynamics simulations (3). T o analyze a protein's stability, according to 
equation 2, two contour maps for the folded and the unfolded states of the protein 
have to be generated and their difference map is used to indicate the stability change 
of the protein upon modification of the residue of interest The free energy cost of 
adding a test particle at a grid point is calculated by (3) 

A G (i , j , k) = -RT In < exp ( -AV(i , j , k) / R T >o (10) 

where i , j and k are the coordinates of a grid point, A G (i, j , k) is the insertion free 
energy and A V ( i , j , k) is the interaction energy between the test particle and the 
surrounding atoms. 

Chemical Monte Carlo/molecular dynamics (CMC/MD). The C M C / M D method 
(4) has recently been developed for determination of relative binding free energies of 
a series of ligands to a common receptor. The method (described in detail in ref. 4) 
employs the M D method for generating a set of coordinates for one distinct chemical 
system and the M C method to sample the chemical space of the system. Appl ied to a 
protein-inhibitor system, the chemical space can be 5-10 different derivatives of the 
inhibitor. Each derivative is included in the simulated system but the potential 
function is "masked" so that only one ligand interacts with the protein and solvent at a 
time. The Monte Carlo steps consist of changes to the "masking" function, effectively 
changing the ligand being simulated. M D is used to propagate the coordinates of all 
the ligands. During the course of the M C / M D run, die probability (PA) of each 
inhibitor V is accumulated according to the Metropolis (14) criteria for accepting an 
inhibitor in an M C step: 

i f AEj ^0=> P w = l , i f AEi >0 => Pm= exp(-AE;/RT) (11) 

where AEi is die difference in protein-inhibitor interaction energy between a randomly 
chosen ligand and the old ligand and P ^ is the acceptance probability. Prior to each 
M C step, the "Boltzmann" probabilities of each ligand V is calculated by: 

P i = exp(-AE;/RT)/2exp(-AE l/RT) (12) 

It can be shown that i f an infinite number of M C steps were performed on a given 
Cartesian conformation, the resulting probability distribution would coincide with 
that calculated from equation 12. In the T IBO-HIV-1 R T systems studied here, we 
used the averaged P/s from equation 12, since they also allow for estimations of the 
relative free energies of poorly sampled inhibitors. The relative free energy of the 
bound state for inhibitors ' j ' and V is then related to their ratio of probabilities 
according to: 

A G j - A G ^ - R T l n P / P i (13) 

Solvent effects, i.e. differences in free energy of binding due to different free 
energies of solvation (AG r o l v ) , can be taken into account by testing the acceptance 
against A E i - A G r o l v i , rather than AEj in equation 11. Using A G r o l v as a biasing potential 
in the M C step, the sampling mirrors the binding free energy - which is the relevant 
property when ranking inhibitors - rather than the free energy of the bound state. 
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The C M C / M D , as outlined above, was found to converge very slowly when 
applied to a series of HIV-1 R T T I B O inhibitors. In order to increase the convergence 
rate, a variant of this method was developed - herein called the "adaptive C M C / M D " 
method (J. Pitera, unpublished). Rather than sampling the chemical space according 
to the relative free energies of the inhibitors, the goal of the adaptive C M C / M D is 
instead to sample this space evenly. This can be achieved by introducing biasing 
offsets, A G o f f s i > that for each ligand T reflects its relative free energy in the bound 
state. A n M C sampling by testing the acceptance against A I v A G o f f s 4 , rather than AEi in 
equation 11, would then result in an even sampling of all ligands, since all A E j - A G ^ 
would be equal to zero. The offsets are solved iteratively. Starting with all A G ^ p O , 
the probabilities of each ligand are calculated according to equation 12, averaged over 
a certain number of C M C / M D - c y c l e s (a C M C / M D run). A first set of A G ^ / s , 
relative to some arbitrarily chosen ligand, is estimated from equation 13, and is then 
used as biasing offsets in the next M C / M D run. The offsets are then adjusted after 
each C M C / M D run, by averaging the P/s from equation 12, and add the adjusted 
offsets obtained from equation 13 to A G ^ . When this procedure has converged, al l 
P/s are equal and the relative free energies of the bound state ( A G b , ^ equals to -
A G ^ . A A G b can then be calculated by subtracting A G r o l v from A G ^ . We estimated 
A G ^ by the G B / S A method discussed below. 

Poisson-Boltzmann continuum electrostatics/solvent accessible area (PB/SA) and 
Generalized Born approximation/solvent accessible area (GB /SA) methods. In 
both the P B / S A and the G B / S A methods, a solvated protein or a small solute 
molecule is represented as a low dielectric cavity containing fixed charges and 
dipoles. The solvent water is represented as a medium of dielectric constant 80 which 
may contain ions. For the P B / S A method, the electrostatic field around a protein or a 
small solute molecule in the presence of salt is estimated by the solution to the 
linearized Poisson-Boltzmann equation (15) 

V(*?(x) V 0(x))- ic 20(x) +4>rp(x) = 0 (14) 

where <f> is the electric potential, e is the dielectric constant, p is the fixed charge 
density and K is the modified Debye-Huckel parameter which depends on the ionic 
strength and temperature of the solution. The Poisson-Boltzmann equation can be 
solved numerically by the finite difference method, in which the continuous functions 
are approximated by distinct values at points on a cubic grid (15). With the 
electrostatic potential obtained from solving the P B equation, the electrostatic 
interaction between a protein or a small solute with the solvent is expressed as (15) 

AGpoi= l /22< tHqi (15) 

where ^ is the potential on charge qi and the sum is over the fixed charges. To 
estimate the electrostatic contribution to the hydration free energy of a molecule, two 
calculations, one for the molecule in vacuo and the other for the molecule in aqueous 
solution, should be performed and their difference in AGpol gives the electrostatic 
contribution to the solvation free energy. A G J , ^ L 2 , S A G L ^ J ^ P in equation 4 
may be approximately estimated by the P B / S A o r the G B / S A methods. For 
AG L l-» L2,s> this involves the calculation of the solvation free energy difference of L i 
or L2. According to equation 15, the calculation of the electrostatic contribution to 
A G L J , _ » J ~ s * s straightforward. The nonpolar contribution to A G L 1 _ * L 2 , S 0 3 1 1 ^ 
calculated according to the following empirical linear relation which correlates the 
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solvation free energies of nonpolar solutes with their solvent accessible area (16,17) 

A G n p o i = E a A (16) 

where A is the solvent accessible area (in A 2 ) , a is the empirical solvation parameter. 
We used a = 5 c a l / m o r l A - 2 in this work. The solvent accessible areas were 
calculated with Connolly's M S program (18). For A G t , - * L 2 , p , this involves the 
calculation of the solvation free energy difference between Li»P and L 2 * P . Direct and 
accurate calculation of this difference is difficult because the solvation free energies 
of the two complexes are large numbers and the estimated difference may have a 
large error. A s a first order approximation, we estimated A G L 1 ^ L 2 , P a s ^ e difference 
in interaction energy between L i and L 2 with the protein and the solvent in energy 
minimized conformations of the complexes. The polar contribution to A G L J - * L 2 , P 
was estimated as the difference in electrostatic interaction energies between trie two 
ligands with the protein and the solvent, which were calculated with equation 15 by 
summing over the atoms of L i or L^. The nonpolar contribution to A C ^ 1 _ > L 2 , p w a s 

estimated as the difference in van der Waals interaction energy between the two 
ligands with the protein and the solvent. 

The G B / S A method uses a similar relation for calculation of the nonpolar 
contribution to the solvation free energy. For the electrostatic part, it uses the so-
called generalized Born approximation which express the interactions between the 
fixed charges and their interactions with the solvent as a sum of pairwise interactions 
(13). The generalized Born approximation is only valid for the Poisson equation 
which correspond to K=0 in equation 14. Since it has not been tested extensively on 
protein systems, we only used it to calculate the solvation free energies of the HIV-1 
R T inhibitors. 

Methods 

1. T4 lysozyme 

The models of the folded and unfolded states. The T 4 lysozyme we analyzed is a 
mutant that has an unnatural amino acid at position 133, S-2-amino-3-
cyclopentylpropanoic acid (Cpe) (19), which differs from an alanine residue in that it 
has a cyclopentyl group attached at Cp on the side chain. Our previous simulation 
study indicated that replacement of the original Leu at 133 with Cpe wi l l better 
stabilize the enzyme than with 19 other natural amino acids, a prediction which was 
confirmed experimentally (19). 

The structure of the mutant T 4 lysozyme with a Cpe was obtained by model 
building using standard geometries based on the structure of the wi ld type T 4 
lysozyme (11) from the Brookhaven Protein Data Bank and was subjected to energy 
minimizations before the molecular dynamics simulations. A n 18 A of cap TIP3P 
water (20) molecules centered around the C e 2 atom of Cpel33 was used in the 
simulations on the enzyme. 17 counterions ( N a + or CI") were added to keep the 
whole system neutral. Only residues within the sphere and the cap water molecules, 
which consists of about 1600 protein and counterion atoms and 260 water molecules, 
were allowed to move in the molecular dynamics simulations. The cap water 
molecules were kept from escaping by a weak repulsive potential (1.5 kcal/mol) at the 
surface of the sphere. 

The unfolded state of the enzyme was represented by a terminally blocked 
solvated dipeptide, A c e - X - N M e , in which A c e and N M e are the acetyl and N -
methylamide groups respectively and X is the unnatural amino acid residue. The 
backbone of die dipeptide was chosen to be in the extended state ( - 1 8 0 o « K 0 o , 
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0°<^<180°) . The side chain dihedral x ( N - C a - C p - C y ) was chosen to be around 180°. 
The dipeptide was placed at the center of a box of 36 x 30 x 30 A 3 filled with TIP3P 
water molecules under standard conditions. The number of water molecules is about 
760. It should be noted that although different boundary conditions were used for the 
folded and unfolded states, because only A A G contribute to the stability difference of 
the protein (equation 2), the error due to different boundary conditions is most l ikely 
canceled. Especially, the mutations we studied are nonpolar, in which the major 
contributions are short-range interactions, and we used the same cutoff radius (see 
below) in the simulations of the folded and unfolded states. 

Force field parameters. The all atom force field developed by Cornell et al (21) 
were used. The atomic charges of the unnatural amino acid were obtained by fitting 
the electrostatic potential around the dipeptide model using the R E S P method (22). 
The electrostatic potential was obtained by a single point ab initio quantum 
mechanical calculation using Gaussian94 (23) with 6-31G* basis set on a geometry 
generated by energy minimization with the A M I method. 

M D simulations. The M D simulations of P R O F E C and C M C / M D were performed 
with the S A N D E R module of the A M B E R 4 . 1 program (24). The M D simulations of 
F E D and TI were performed with the G I B B S module. Each simulation was 
performed with 2 fs time step, 8 A cutoff radius and restrained temperature around 
300K (25). The bond lengths were constrained by the S H A K E algorithm (26). For the 
simulations in water, periodic boundary conditions were applied and the pressure was 
controlled at 1 atm (25). The S E T T L E algorithm was used to speed up the 
calculations on water molecules (27). 

F E D and P R O F E C calculations. The free energy derivatives (FED) and the 
P R O F E C contours were calculated from 300 ps and 100 ps M D simulations in the 
enzyme and in water, respectively. The Q 2 of Cpel33 was used as the origin of the 
grid. The two hydrogens attached to C E 2 were used to define the x-axis and the xy-
plane. The parameters of the Lennard-Jones test particle are R*=2.0 A and e=0.15 
kcal/mol, which are close to the van der Waals parameters of a tetrahedral carbon 
atom. The P R O F E C results were visualized with U C S F MidasPlus (28) through a 
special delegate program written by R. J. Radmer. 

Free energy calculations (TI). Each calculation was performed from fc=0-*l (the 
forward change) and X.->0 (the backward change). The average of the two results and 
their absolute difference were taken as the estimated A G and the hysteresis. The 
simulation time for each change ranges from 164 ps to 504 ps and the number of 
windows are from 41 to 126 (see Table II). For each window, the first 2 ps simulation 
was used as equilibration and the following 2 ps was used as sampling. 

2. HIV-1 R T and its TIBO inhibitors 

Force field parameters for the TIBO derivatives. Van der Waals ( V D W ) 
parameters of the chlorine atoms were taken from parameters used for chloroform 
(29) and the parameters for the sulfur atom ( V D W , bond, angles, dihedrals and 
improper dihedrals) were adopted from a parameterization of thiobiotin (30). We used 
both the conformation of 8C1-TIBO (R86183, see Table III) in complex with HIV-1 
R T (31) as well as the A-form of the crystal structure of 9C1-TIBO (R82913) (32) to 
estimate the partial atomic charges of 8C1-TIBO, 9C1-TIBO and unchlorinated T I B O 
(R82150). The two respective conformers were geometrically optimized using 
Gaussian94 (23) at the STO-3G level, each followed by a calculation of the 
electrostatic potential with the 6-31G* basis set. Atomic partial charges of the T I B O 
derivatives were fitted to the electrostatic potentials around the two structures using 
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the R E S P method (22). Comparison of the partial charges evaluated from the two 
conformers individually showed a very small difference and we therefore evaluated 
the partial charges of the remaining T I B O derivatives (Table III) using only the T I B O 
conformer of 8C1-TIBO in HIV-1 R T . 

Setup and equilibration of HIV-1 R T in complex with 8C1-TIBO. Unresolved 
residues (modeled as alanines) as well as hydrogens were added to the 3.0 A 
resolution crystal structure of 8C1-TIBO in HIV-1 R T (31). After a short 
minimization of the hydrogens in vacuo, the complex was hydrated by immersing it 
in a 55 A radius sphere of TIP3P-water (20). The solvent sphere and the protein-
inhibitor complex were minimized to let the protein relax in an aqueous environment. 
A l l water molecules beyond the first hydration shell (i.e. at a distance > 3.5 A from 
any protein atom) were then removed and counterions (11 CI") were added to achieve 
electroneutrality. Protein residues with any atom closer than 12 A from 8C1-TIBO 
were chosen to be flexible in the simulations and all protein residues, water molecules 
and counterions further than 15 A from any flexible residue were deleted. A 20 A 
radius spherical cap of TIP3P-water, including the hydrating water molecules within 
the sphere from the previous step, was centered on T I B O and equilibrated for 50 ps at 
300 K . The protein, 8C1-TIBO and the hydrating water molecules outside the water 
cap were then kept rigid. Thereafter, the flexible residues (as defined above) and 8C1-
T I B O together with the cap of water molecules were then heated (50 ps) and 
equilibrated for 300 ps at 300 K . The simulations were carried out with the S A N D E R 
module of A M B E R 4.1 (24) using the Cornell et al force field (21). We applied a 
dual cutoff of 9 and 13 A , respectively, where energies and forces due to interactions 
between 9 and 13 A were updated with the same frequency as the non-bonded list, 
i.e., every 20 time steps. A time step of 2 fs was used and all bonds were constrained 
with the S H A K E algorithm (26). The temperature was maintained using the 
Berendsen method (25), with separate couplings of the solute and solvent to the heat 
bath because the relaxation times of the solute and solvent may be different (33). 

Setup and equilibration of 8C1-TIBO in solution. A s starting conformer we chose 
the A-form from the crystal structure of 9C1-TIBO (32), with a substitution of the 
atoms at positions 8 and 9. 8C1-TIBO was then immersed in a box of TIP3P water 
with dimensions 34 x 33 x 29 A . Keeping the inhibitor rigid, the water molecules 
were equilibrated at constant pressure for 100 ps. The T I B O atoms were then released 
and the system was equilibrated for 200 ps, using the same dual cutoff and time step 
as for 8C1-TIBO in HIV-1 RT. 

Adaptive C M C / M D . The method was applied to 8 different T I B O derivatives, 
shown in Table III. Each inhibitor was positioned in the equilibrated HIV-1 R T - 8C1-
T I B O complex (see above), by substituting and/or deleting atoms in 8C1-TIBO. The 
inhibitors were then allowed to relax in the binding pocket by individually 
minimizing them, keeping everything but the inhibitor rigid. Due to problems with 
the S H A K E algorithm during the M D steps, the time step was reduced to 1.5 fs and 
one M C step was performed every 20 M D time steps. We applied the adaptive 
C M C / M D method for two sets of inhibitors, the A G ^ ' s (see the "Theory" section) 
were iteratively adjusted every 500 M C steps for set 1 and we shortened that interval 
to every 125 M C steps for set 2. The free energies of solvation for the T I B O 
derivatives were estimated from G B / S A (13) calculations, using the program 
MacroModel/BatchMin, version 4.5 (34). For these calculations, we used our R E S P 
derived charges on the derivatives, which were minimized in vacuo prior to the 
calculations. 

PB calculations. The 8 different T I B O - HIV-1 R T systems were further minimized, 
now with flexible residues, water molecules and counterions as in the M D 
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simulations (see above). A l l water molecules and counterions were then removed and 
the P B calculations were carried out with the latest Delphi package (35,36), using a 
dielectric constant e=2 for both the protein and the inhibitors and with a ionic strength 
of 0.13 M . For estimations of A G u _ L 2 s (equation 3), the same structures as for the 
G B / S A calculations (above) was used, with 8=2 and an ionic strength of 0.13 M . 

Free energy calculations (TI). For these calculations, which were carried out with 
the G I B B S module of A M B E R 4 . 1 , we applied the same parameters and protocol as 
for the M D simulations (above). Starting with the equilibrated systems of 8C1-TIBO 
in HIV-1 R T and in solution, respectively, the 8-chloro atom was perturbed into a 
hydrogen (R82150), using a window size (AX) of 0.02 (i.e. 51 windows in the X.-
interval [0,1]). For T I B O in solution each window was equilibrated for 2 ps prior to a 
data collection time of 5 ps per window. The equilibration/data collection times for 
T I B O in HIV-1 R T were 3 ps and 8 ps, respectively. 

Results 

1. The stability of T4 lysozyme 

Free energy derivatives and P R O F E C . The free energy derivatives with respect to 
V D W radius (R*) of eight hydrogen atoms on the cyclopentyl ring of Cpe were 
calculated (Table I). The configurations of the hydrogens are defined as either pro-a 
or pro-p. The pro-a hydrogen is on the opposite face of the cyclopentyl ring from the 
Cp atom; the pro-p hydrogen is on the same face as the Cp atom. This definition of 
configurations is similar to that of the anomers of sugars. From Table 1, one sees that 
the free energy derivatives of H D 1 2 (pro-a), H E 1 2 (pro-p), HE21 (pro-a) and H D 2 2 
(pro-p) are negative, indicating that introducing some V D W group larger than 
hydrogen on either one of these sites may stabilize the protein. Because the free 
energy derivative of HE21 is the lowest, we focused our analyses around C E 2 where 
HE21 is attached. 

Table I. The free energy derivatives of Cpe (kcal/mol) a 

Atom dG/dR*,prot dG/dR*,soln Aprot-soln configuration 
HD11 7.7 6.1 1.6 pro-p 
H D 1 2 3.9 6.4 -2.5 pro-a 
HE11 6.7 2.5 4.2 pro-a 
HE12 4.5 6.3 -1.8 pro-p 
HE21 2.4 6.3 -3.9 pro-a 
HE22 7.1 2.5 4.6 pro-p 
HD21 6.8 3.7 3.1 pro-a 
H D 2 2 6.4 8.9 -2.5 pro-p 

The free energy derivatives were obtained by 300 ps M D simulations in the 
enzyme and in water. 

The P R O F E C contour of zero V D W potential with C 8 2 of Cpe as the origin is 
shown in Figure 1. Interestingly, the contour has the shape of a vase; its mouth faces 
the cavity and its neck embraces C E2- The contour agrees with the free energy 
derivatives in that there is much more space for introducing a group at HE21 
(negative derivatives) than at H E 2 2 (positive derivatives). A natural proposal is the 
introduction of a methyl group at HE21 in the a configuration. In the following, we 
refer to this modification as Cpe -»a -Mcpe and refer to the introduction of the methyl 
group at HE22 in the p configuration as Cpe-*p-Mcpe. Figure 2 shows the 
superimposition of a methyl group at HE21 and at HE22. Obviously, the methyl 
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Figure 2. The superimposed structures of a methyl group at HE21 in the a 
configuration (a), and at HE22 in the p configuration (b). 
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group introduced at HE21 can fit very well in the cavity while the methyl group 
introduced at HE22 wi l l collide with the wall of the vase belly. This suggests that 
adding a methyl group at HE21 in a configuration wi l l improve the stability of the 
enzyme with a Cpe at position 133. 

Table II. The A G of Cpe-»Mcpe in water and in the enzyme (kcal/mol) a 

medium config. time forward A G backward A G average A G 
protein a 164 ps -1.92 -2.20 -2.06 
protein a 324 ps -2.70 -2.59 -2.65 
protein a 488 ps -2.64 -2.56 -2.60 
protein P 164 ps -0.24 0.30 0.03 
protein P 324 ps -0.66 -0.22 -0.44 
water a 164 ps -1.18 -0.94 -1.06 
water a 324 ps -0.51 -0.36 -0.44 
water a 504 ps -0.86 -0.85 -0.86 
water P 324 ps -0.66 -0.22 -0.44 

a Each window has 2 ps / 2 ps for equilibration and sampling. The 164,324 and 
504 ps simulations have 41,81 and 126 windows respectively. The 488 ps 
simulation: 41 windows for the electrostatic contribution and 81 windows for the 
V D W contribution. 

Free energy calculations (TI). We have calculated the free energy changes for 
introducing a methyl group in the a (at HE21) and p (at HE22) configurations in 
water and in the T4 lysozyme (Table 2). One sees that the calculated average AGs are 
not sensitive to the length of simulation time and the hystereses are < 0.5 kcal/mol. 
For the simulations in the enzyme, we used the results of 324 ps for forward or 
backward change as the estimated free energy changes: A G (Cpe-»a-Mcpe) = -2.65 
kcal/mol and (Cpe-*p-Mcpe)= -0.44 kcal/mol. For the simulations in water, Cpe-*a-
Mcpe and Cpe->p-Mcpe should give similar results as is seen from the results of 324 
ps for both configurations. Since the average A G of Cpe-»a-Mcpe fluctuates around -
0.8 kcal/mol for different lengths of simulation time, -0.8 kcal/mol is taken as the 
estimated average A G in water. Based on these results, Cpe-*ct-Mcpe wi l l stabilize 
the enzyme by 1.8 kcal/mol while Cpe-»p-Mcpe wi l l destabilize the enzyme by 0.4 
kcal/mol. Therefore, the free energy calculations support the predictions of P R O F E C . 

2. Relative binding affinity to HIV-1 R T for a series of TIBO inhibitors 

Adaptive C M C / M D and PB calculations. In Table I V , we present the relative 
ranking of the T I B O derivatives found in the C M C / M D and P B calculations. The 
numerical values of the relative free energies and full details wi l l be presented 
elsewhere. The three best binding T I B O derivatives were also ranked as the best with 
the adaptive C M C / M D method. In this context, it should be noted that deviations in 
the rank order from the experimental results also might be due to an imperfect 
agreement between HIV-1 R T activity and binding affinity, caused by differences in 
cell penetration ability and metabolic stability between the T I B O derivatives. The 
experimental E C ^ values (Table III) of the three next inhibitors, ranked 4 to 6, are 
very close to each other and they are also ranked 4 to 6 with the C M C / M D method. In 
the P B calculations, A A G b for R84914 has significantly been overestimated and its 
rank order is thus too favorable, which shifts the rank order of these three derivatives 
downwards. Omitting R84914 in the ranking according to P B calculations, the 
agreement with experiment is very good and the order is reversed for only two 
inhibitors (R87027 and R84674). Finally, the two inhibitors with the highest A A G b ' s 
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(R84914 and R80902) are also correcdy ranked with both methods. The poor binding 
of R80902, which has an oxygen instead of a sulfur atom at position 2 (Table III), is 
mainly due to its favorable free energy of solvation ( A G ^ J . According to the G B / S A 
method, we estimated A G r o l v for R80902 around 2 kcal/mole lower than for the other 
T I B O derivatives. Both the adaptive C M C / M D and the PB calculations have very 
reasonable average errors in the A A G b compared to experiment (0.71 kcal/mole and 
1.12 kcal/mole, respectively). 

E C 
Table III. The selected set of T I B O derivatives (see also Figure 3). 

5a 
H -CH 2 -CH=C(CH3) 2 4.6 
H -CH 2 -CH=C(CH3) 2 33 
H -CH 2 -CH=C(CH3) 2 44 
H -CH 2 -CH=C(CH3) 2 4200 
H -CH 2 -CH=C(CH3) 2 14 

- C H 3 (transf -CH 2 -CH=C(CH3) 2 39 
- C H 3 (cisf -CH 2 -CH=C(CH3) 2 790 

H - C H , - C H = C ( C H , C H J , 5.1 
a ref. 12. 
b relative stereochemistry of the methyl groups at positions 5 and 7. 

Compound 
R86183 8-C1 S 
R82913 9-C1 s 
R82150 H s 
R80902 H 0 
R84674 8 - C H 3 s 
R84963 H s 
R84914 H s 
R87027 8-C1 s 

Table IV . Rank order of A A G W ^ A G ^ - A G ^ - ( A G ^ - A G ^ s , ) ] for the T I B O 
derivatives from adaptive C M C / M D , P B calculations and experiments (12). 

Compound 
adaptive C M C / M D PB-calculations experimental 

Compound rank rank A A G b i

a 

R86183 3 1(1)" 0 1(1) 
R87027 1 4(3) 0.06 2 (2) 
R84674 2 2(2) 0.66 3 (3) 
R82913 6C 5(4) 1.17 4(4) 
R84963 4C 6(5) 1.27 5 (5) 
R82150 5C 7(6) 1.34 6(6) 
R84914 7C 3 3.05 7 
R80902 8 8(7) 4.04 8 (7) 

"calculated from M G t u ^ R T l n ( E C 5 D . / E C S D L « 1 0 ) , T=298 K , R= 1.986 cal/K/mole. 
b The ranking in parenthesis is when excluding R84914. 
c Average rank order from two sets of MC/MD-runs . Set 1 consists of the 
following derivatives with known experimental binding affinities: R86183, 
R81913, R84963, R82150, R84914 and R80902 and was run for 450 ps. Set 2 
consists of R86183, R87027, R84674, R81913, R84963, R82150 and R84914 and 
was run for 560 ps. 

Free energy calculations (TI). Perturbing 8C1-TIBO (R86183) into 8-H T I B O 
(R82150), yields a relative binding free energy (-1.9±0.5) in close agreement with 
experiment (12) (-1.34). The perturbation in water is well converged as seen from the 
close values from the forward and reverse runs (Table V ) . However, in spite of the 
extended equilibration/data collection times (see "Methods") for the inhibitor in H I V -
1 R T , these perturbations show a considerable hysteresis. Decomposition of the free 
energies shows that the van der Waals contribution is responsible for the slow 
convergence, differing by 1.4 kcal/mole between the forward and reverse runs. The 
same decomposition also reveals that the better binding of R86183 compared with 
R82150 is almost entirely due to a more favorable van der Waals contribution to the 
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free energy for the former inhibitor. Considering that the relatively non-polar T I B O is 
positioned in a hydrophobic and aromatic binding pocket, it is not surprising that van 
der Waals forces dominate the binding interaction. 

Table V . Free energy calculations, R82150-»R86183. The numbers are in kcal/mole 
and error estimates are within parenthesis. 

A G u _ ^ P

a A A G b

a 

forward reverse average forward reverse average 

* G t o t

c 1.53 1.69 1.61 -0.78 0.13 -0.32 -1.9 (0.5)D 

A G e l e c 

A G v d w 

2.52 2.70 2.61 2.71 2.20 2.45 -0.16 (0.26) A G e l e c 

A G v d w 

0.70 0.70 0.70 -1.65 -0.27 -0.96 -1.7 (0.7) 
A G e l e c 

A G v d w 

-1.69 -1.71 -1.70 -1.83 -1.73 -1.73 -0.03(0.11) 
a see equations 3-4. 
Experimental value: -1.34 kcal/mole (12). 
c A G t o t is the total free energy, A G ^ and AG v d w a re the electrostatic and van der Waals 
contributions, respectively, and A G ^ is the bond potential of mean force 
contribution. 

Conclusions 

We have studied the stability of T4 lysozyme and the binding free affinities of the R T 
T I B O inhibitors by several approximate and efficient free energy calculation methods 
and the rigorous TI method. For T 4 lysozyme, the F E D and P R O F E C are useful for 
suggesting promising sites and candidate modifications to improve the stability of the 
protein. The results were supported by the TI calculations. The combination of F E D 
and P R O F E C appears to be very efficient and effective in making predictions. B y 
using F E D , one can quickly find the promising sites and then P R O F E C can be used 
on these sites to suggest candidate modifications. Compared with TI , F E D and 
P R O F E C calculations are much faster: only a few hundred ps of M D simulation is 
required to obtain reasonable results. The information generated by F E D and 
P R O F E C can be quite comprehensive because in many cases it is appropriate to 
calculate the free energy derivatives for many atoms in a single M D simulation and 
use the same trajectories to construct the P R O F E C contours. For the R T inhibitors, 
both the chemical M C / M D method and the P B calculations are able to rank T I B O 
derivatives in good agreement with experiment. Since these methods are quite 
different in nature, each with their own set of approximations, they serve as a good 
complement to each other. That is, i f both methods predict the same rank order, the 
reliability of this prediction wi l l significantly increase. Considerable simulation times 
(1.1 ns) were required for a reasonable estimate of the relative free energies of just 
two T I B O derivatives bound to R T in our TI calculations. In that perspective, the two 
more approximate methods worked surprisingly well and produced valuable 
information with substantially less effort and time. However, one sees that by 
decomposing of free energy differences into components, the TI calculations can 
provide important insights into the nature of T I B O - R T interactions. 

In summary, the approximate methods used here are able to make quite 
reasonable predictions with much less computational cost than the rigorous TI 
calculations. Therefore, they are valuable at least as fast screening tools in the last 
stages of structure-based drug refinement and protein engineering. The rigorous free 
energy calculations (TI, or FEP) are computationally expensive, but can be used to 
support the predictions of the approximate methods and help to gain insights into the 
nature of molecular interactions. We envision a hierarchy of computational methods 
that can be applied to these sorts of problems. First, F E D and P R O F E C can be used to 
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suggest lead plausible modifications for lead optimizations. Second, C M C / M D or PB 
calculations can be used to rank the binding affinities or stabilities of many ligands or 
mutants in a short time. Finally, traditional free energy methods (TI, or FEP) can be 
used to analyze a few particularly interesting cases. 
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Chapter 4 

Binding Evaluation Using the Finite Difference Solution 
to the Linearized Poisson-Boltzmann Equation 

and Solvation Entropy Correction 

Jian Shen 

Computational Chemistry, Hoechst Marion Roussel, Inc., Route 202-206, 
Bridgewater, NJ 08807 

The finite difference solution to the linearized Poisson-Bolzmann 
equation is used to compute the electrostatic binding free energy of 
various receptor-ligand systems including L-arabinose-binding 
protein, thermolysin, thrombin, collagenase, etc. The non
electrostatic binding free energy is approximated using the empirical 
solvation entropy correction. Besides the balanced speed and 
accuracy, the method provides detailed mechanistic insights of the 
binding interactions and thus the rationales for both lead optimization 
and lead generation. Practical concerns and limitations of the method 
are also discussed. 

The determination of receptor-ligand binding affinity (in terms of K i , Kd, IC50 or 
binding free energy) has been an integral part of new drug discovery. Enhancing 
binding affinity is often a top priority in lead generation and lead optimization. 
Chemical modifications to improve other pharmacological properties also require 
maintaining a predefined binding affinity. Medicinal chemists often estimate 
binding affinities of prospective drug molecules based on statistical analysis or their 
own intuition for selective syntheses. If the structural information of the receptor is 
available, many suggestive ideas about binding improvements can be simulated by 
visualizing the 3D graphics. However, the outcome of a new compound usually 
remains chancy. On the other hand, the structural information provides essential 
input for free energy evaluation based on statistical mechanics (7,2) and promises an 
ultimate solution to predict the binding free energy and other thermodynamic 
properties (3). 

Indeed, many developing methods (4) based on the structure of receptors 
have various success stories. To be able to impact on pharmaceutical research, a 
binding energy calculation method has to be reliable, fast and comprehensible. First, 
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a qualitatively correct prediction for a variety of receptor-ligand binding systems is 
essential to real application. The numerical values are also required to be 
quantitatively close to experiments and reproducible. Second, the method needs to 
generate results quickly enough for making a synthetic decision, which usually 
means within a day or two. Third, the analysis of calculated results should offer an 
explanation of the ligand-receptor interaction, and thus suggests new directions to 
improve binding. 

Among several promising computational technologies, the finite difference 
solution to the linearized Poisson-Bolzmann equation and solvation entropy 
correction (FDPB + SEC)(5) has unique features in terms of accuracy, speed and 
mechanistic insight for binding energy calculation. Because of no cut-off for 
electrostatic interaction and inclusion of solvent effect, F D P B is considered to be 
one of the most accurate methods to compute electrostatic energy(6). Studies (7) 
show that the numerical error in the calculation can be reduced to just a few tenths 
of kcal/mol when appropriate settings are used. Furthermore, the computing speed 
has been improved in parallel with the computer technology. A typical protein-
ligand binding energy calculation (consisting of six F D P B calculations on a 100 3 

grid) can be completed within one hour C P U on a R4000 processor 
(SiliconGraphics) while the cost is only half of that on a R10000. The computing 
speed is no longer a practical concern because the manual preparation of correct 
inputs usually takes more time. Finally, the method provides components of 
calculated binding energy difference such as solvation and hydrophobic binding. 
Analyzing these components can direct new molecular modification for improving 
binding and other pharmacological properties of ligands. 

The principle of using F D P B for electrostatic binding energy calculation was 
described by Gilson and Honig (8). The early applications were focused on the effect 
of salt concentration on binding energy. The first published attempt by Karshikov et 
al.(9) to calculate hirudin-thrombin binding energy was not successful. One common 
opinion about the method was its inaccuracy due to the grid representation of 
molecules (both partial charges and dielectric boundaries). However, improved 
techniques in F D P B have essentially eliminated the problem. The method has been 
successfully applied to several binding complex systems including sulfate-binding 
protein (70), L-arabinose-binding protein (ABP) , thermolysin (77), carbonic 
anhydrase (72) and isocitrate dehydrogenase (73). 

In this paper, we first review the basics of the F D P B + S E C approach. Then, 
several applications to ligand-protein systems including A B P , thermolysin, thrombin 
and collagenase are presented. These systems are either therapeutic targets or drug 
binding models. A B P is one of periplasmic receptors, which function as uptake of a 
variety of nutrients. There is increasing interest in carbohydrate-related drug 
discovery. Thermolysin, a zinc endopeptidase, has served as a model for 
angiotensin-converting enzyme. Recently, it has been found to degrade amyloid, and 
thus is implicated as a potential therapeutic for Alzheimer's disease. Thrombin is a 
well-known target for cardiovascular disease. Collagenase is a member of matrix 
metalloproteases (MMPs) . These enzymes play a cardinal role in the breakdown of 
extracellular matrix and are involved in a variety of biological and pathological 
processes. In addition to their therapeutic value, these receptor-ligand systems have 
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multiple high-resolution 3D structures determined by x-ray crystallography. The 
specific methods used to treat problems associated with electrostatic, 
nonelectrostatic, H-bond, conformation, and the origin of electrostatic binding of 
proteins are described below. Finally, certain underlying assumptions and 
limitations of the method are discussed. 

Theory and Method 

For noncovalent binding of a ligand, Lo (reference system), to a receptor, P 

the associated binding free energy, AGo, can be partitioned into electrostatic and 
nonelectrostatic components, AGe and AGn, respectively: 

Similarly, we have AGi for a modified ligand, L i . Thus, the binding energy 
difference, AAG, between the reference system and the modified system is: 

The reason to calculate AAG is that the model to calculate AGe + AGn may not 
include every significant interaction in a binding process. W e assume that the 
neglected interactions are identical in both the reference and modified systems. 
Therefore, they w i l l cancel in AAG. Knowledge of the relative binding energy is 
sufficient for most practical application. 

Electrostatic Calculation. The electrostatic binding energy, AGe, is calculated 
through the following thermodynamic cycle: 

Lo + P -> LoP, 

AG0=AGe + AGn. (1) 

AAG = AGi - AG0 = AAGe + AAGn. (2) 

AG. e L + P (solution) L P (solution) 

L + P (uniform e) L P (uniform e) 
ra 

AGe=AGS)b-AGs>f+AGa (3) 

AAGe = AAGs,b - AAGs,f+ AAGa 
(4) 
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where e is the dielectric constant of the system including the binding molecules and 
their environment. In this approach, two solvation energies (AGSfb and AGSff) are 
obtained from four electrostatic calculations using F D P B . The binding interaction in 
the uniform £ state (also called assembly energy or coulombic energy), AGa, is 
analytically calculated using Coulomb's law. In principle, the AGe can be obtained 
by computing electrostatic energies of L + P and L P without bypassing. However, 
such calculated values are difficult to interpret or analyze. The value of this 
approach wi l l become apparent later in this article. The other advantage of this 
approach is the reduction of error even though this is not so critical. 

One of the most controversial parameters used in continuum models of 
proteins is the dielectric constant, which ranges from 2 up to 20 in many 
applications. It is used to account for the polarizability of electrons, atomic dipoles, 
macrodipoles, and probably the uncertainties of coordinates of a protein. Because it 
cannot be measured experimentally nor calculated with ab initio, this empirical 
value is determined by comparing calculated and experimental electrostatic 
interaction energy. After testing several values (7), we found that a constant of 3 is 
good for the binding energy calculation with the force fields across several protein 
systems. Due to the solute dielectric (i.e., 3 in our work), a dielectric constant of 3 is 
used for the environment of the uniform e state to simplify the calculation of A G a . 

The Finite Difference Solution to the Linearized Poisson-Boltzmann 
Equation (FDPB). The electrostatic free energy (Ge) of a molecular system is 
calculated through 

G e = 0 .5E q i ( | ) (5) 

where q i ? a charge of atom i , and (|), the electrostatic potential, are related though the 
linearized Poisson-Boltzmann (LPB) equation: 

- V •tV^ + £K2(|> = p (6) 
where K is the inverse Debye-Huckel screening length and p, the charge density, 
relates to q (q = j p dV). This equation is solved numerically using the finite 
difference method. In this method, the atomic charges and dielectric of a molecular 
system are partitioned into 3D grids. The associated potential grid is obtained by 
iterative solution of the L P B equation. Available commercial software includes 
U H B D (14) and DelPhi (75). 

Non-electrostatic energy calculation. It has been assumed that non-electrostatic 
binding energy difference is due to the solvation entropy difference. Indeed, the 
solvation entropy dominates the solvation free energy of nonpolar molecules such as 
alkanes. Although the free energy calculated by solving the P B equation has an 
entropy component (electrostatic) in terms of the temperature derivative of 
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dielectric, it does not include solvent-solute correlation functions (16) that constitute 
the solvation entropy. 

In an early binding energy application (77), we tried to estimate the 
nonelectrostatic energy by counting the number of waters displaced from a binding 
site of an enzyme assuming that the release of one water molecule equals 3/2 kT 
(translation degree of freedom). Although it can account for most hydrophobic 
modifications in a series of thermolysin inhibitors, the treatment lacks strong 
theoretical basis and is too arbitrary to handle a volume smaller than a water 
molecule. 

The molecular surface area, or solvent accessible surface area ( S A S A ) , has 
long been recognized and used as a correlation to solvation free energies. Sitkoff et 
al (77) derived a single surface tension coefficient to account for nonpolar solvation 
energies in F D P B calculation. Because the coefficient is optimized along with the 
force field parameters, it can be complicated when applied to macromolecular 
systems. 

Solvation entropy correction (SEC). In seeking a better way to calculate 
AAGn, we(5) found that the average solvation entropic energy (-TAS) is 40 ± 5 
cal/mol A 2 for a unit S A S A of both polar and nonpolar molecules(7#). This value is 
also close to 30 cal/molA2 derived from a simulation (79). Thus, our AAGn, or the 
solvation entropy correction (SEC) is derived as: 

AAGn = 0.04 (Mb - Mfi (kcal/mol) (7) 

where My* and AAb are water accessible surface area changes of the free state and 
the bound state in two binding complexes, respectively. 

Calculation Setup. Protein polar hydrogens are added to the x-ray structures 
studied in this work and energetically minimized using the program X - P L O R (20) or 
C H A R M m (27). The coordinates of the modified inhibitors are modeled based on 
their reference structures. A l l calculations are done using U H B D with a 
100x100x100 grid. The solvent region in the F D P B calculation is determined using 
the accessible surface of a probe of 1.1 A radius and modeled with a dielectric of 78. 
A n ionic strength of 0.01M and an ion excluding shell of 1.4A represent the 
solution. A dielectric constant of 3.0 with a smooth dielectric boundary is used to 
define the interior of ligands and proteins. A single focusing step is applied to 
reduce the grid spacing from the initial lA to the final 0.25A around the binding 
site. G R O M O S (22) charges are used for proteins and some ligands. Other charges 
on ligands are either from published data or ab initio calculations (10,11). 

Applications 

Electrostatic binding. For a given receptor, two binding ligands may differ 
electrostatically (i.e., their partial charge distributions vary but there is no significant 
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change in size). A n example is the substitution of an H-bond donor or acceptor like 
a hydroxyl of D-galactose (Gal) as shown in Table I. Compared with the Gal , the 

Table I. Sugar Binding Free Energy Differences and Their Components for 
A B P (kcal/mol)a 

Sugar AAGa AAGS AAGe AAGy exp 

o D-galactose 

O-"Y/,/C 

0.0 0.0 0.0 0.0 

4.50 -5.78 -1.28 -0.5 
L-arabinose 4.69 -5.91 -1.22 

o D-fucose 

o 6-F-deoxyl-Gal 

o 2-deoxyl-Gal 

4.64 -3.10 1.53 1.62 
5.05 -3.43 1.62 

5.81 -2.46 3.35 2.6 
6.02 -2.41 3.62 

5.78 -3.20 2.58 3.6 
5.89 -4.39 1.50 

1.64 -0.32 1.32 1.8 
° T 7.23 -3.12 4.11 

o 1-deoxyl-Gal 

a. The sugar structures are shown as a form. The first calculated value in each 
column is for a anomer and the second one for P anomer, respectively. 

b. AAGS - AAGs,b - AAGs,f-

lack of one hydroxyl in other sugars results in various binding energy differences 
from -0.5 to 3.6 kcal/mol. Although a few complex structures of ABP-sugar have 
been solved by x-ray crystallography (23), it is still difficult to predict and quantify 
these energetic differences. 

The calculation (70) using F D P B was quite satisfactory regarding qualitative 
trends and quantitative values. Wi th reference to Gal binding, it correctly 
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reproduced better binding for arabinose (Ara) and smaller affinities for the rest. 
Since two forms (depending on the configuration of 1-OH) of Gal were found in the 
x-ray structure, both were used as references to calculate the corresponding modified 
sugars. The populations of two anomers may not be equal in both free and bound 
states. In fact, only one anomer of bound arabinose can be found in a mutant A B P 
crystal structure (Quiocho, F. A . et al. Baylar College of Medicine, unpublished 
data). Nevertheless, the quantitative discrepancies between calculated sugar binding 
energy differences and experiments are generally less than 1 kcal/mol. Further 
improvements can be made by including the non-electrostatic contribution. A s 
previously analyzed, this term generally favors a large group. Because Ara , Fucose 
(Fuc), 1-deoxy-Gal and 2-deoxy-Gal are smaller than Gal is, this contribution wi l l 
make their binding energies more positive. 6-F-deoxyl-Gal is considered bigger than 
Gal is due to the greater van der Waals radius of fluorine and the longer C - F bond 
length. Thus, its binding energy should be adjusted negatively. This work wi l l be 
carried out in the future in our lab and is expected to bring the results closer to the 
experiments. 

The calculation also provides an important mechanistic explanation of why 
A r a is a better ligand and Fuc is a worse one than Gal is. Both Fuc and A r a have less 
binding contribution from the coulombic energy (positive AAGd) than Gal does due 
to the lack of a hydroxyl (H-bonded to Asn 89 of A B P ) . However, A r a is much 
more solvated than Gal (negative AAGs) in bound state due to the lack of 6 - C H 2 O H . 
This favorable solvation outweighs the loss of a hydrogen bond and makes A r a the 
tightest substrate for A B P . In contrast, the solvation contribution for Fuc is not big 
enough to compensate for the loss in coulombic energy, which dominates the overall 
change. The solvation difference from the calculation is consistent with the x-ray 
crystallographic observation (24) that a bound water, water 311, shifts toward the 
bound A r a more than toward the bound Fuc. 

Hydrophobic interactions. Omission of non-electrostatic differences in sugar 
binding does not affect qualitative results because the size changes among these 
sugars are small, mostly one non-hydrogen atom. However, the non-electrostatic 
solvation cannot be neglected in other cases such as the calculation of a series of 
thermolysin inhibitors (25). These peptidyl analogues have different hydrogen bond 

Phosphorus-Containing Inhibitors Cbz-Gly-\|/(P02)-

X-Leu-Y-R (ZGP(X)L(Y)R), where X = N H , O or 
CH2; Y = N H or O; R = Leu, Ala, Gly, Phe, H or CH3. 
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donor and acceptor on the backbone as well as varied P2* amino acid residues. The 
difference in molecular size between the reference ligand and a modified ligand 
ranges from two to eight non-hydrogen atoms, which challenges any binding energy 
calculation method. B y combining F D P B with SEC, we (5) demonstrated that the 
calculated binding energy differences correlate very well to the corresponding 
experimental values as illustrated in Figure 1. 

1 2 3 4 5 6 7 

AAGexP(kcal/mol) 

Figure 1. The calculated binding energy difference vs. experiments for 13 
phosphorus-containing inhibitors, (ZG P(X)L(Y)R). The symbol circle is for 
ZG P (X)L(Y)L, square for ZG P (X)L(Y)R (R * Phe (F)) with solvation energy 
correction (SEC) and triangle for ZG P (X)LF (two conformations) without SEC. 
The calculated binding energy differences are well correlated to the 
experiments (r = 0.90) at the same energy scale, (reproduced with permission 
from ref. 4. Copyright 1995 The Protein Society) 

The need to include S E C can be seen more clearly in Figure 2, where another 
series of thermolysin inhibitors, Z R p ( 0 ) L A , was calculated (26). The electrostatic 
binding, which prefers a small hydrophobic group, has an opposite trend compared 
with that of the experiment. Understandably, the electrostatic solvation of the 
complexes dominates AAGe because AAGa is zero and AAGSff is small. The 
addition of AAGn, which favors a large hydrophobic group, brings the calculated 
energy difference trend in line with the experiment. 

H-bond strength. In many cases, the initial hits in an enzyme-targeted project are 
peptidyl inhibitors, which usually suffer from low oral bioavailability and quick 
degradation. While further screening may generate new hits, designing a new 
scaffold based on the peptide hits is an alternative approach in lead generation. In 
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M M P project, we reasoned that each amide or carbonyl of a bound peptide inhibitor 
does not contribute equally to the binding. The weakest H-donor or acceptor might 
be a potential moiety for modifications. 

-1 -I 1 h 
ZF(0)LA ZL(0)LA 

Inhibitor 

Figure 2. Calculated and experimental binding energy differences for 
ZR P (Q)LA. 

The x-ray studies of collagenase(27) as well as stromelysin(2#) show that all 
amides and carbonyls of a hydroxamate inhibitor are H-bonded to the protein active 
site. In order to predict each H-bond strength, we artificially turned off the partial 
charges on six N H and C O groups one at a time and calculated the binding energies 
using the F D P B method. Due to the uncertainties of the proton position between the 
active site G lu 219 and the hydroxamate, and of ionization of the hydroxamate, 
three binding mechanisms were assumed. Thus, differently protonated inhibitors and 
enzymes were subjected to this study, as shown in the Figure 3 legend. 

The results support our hypothesis that not all H-bonds in the peptidyl 
inhibitor are equally important. The P I C O and P I ' N H are the strongest H-bonds 
and P I ' C O and P2 ' N H the weakest. Understandably, the different proton 
assignments only affect the nearby PI C O and P I ' N H . The three binding 
mechanisms result in basically the same conclusion, which also validates the 
numerical calculations. 

Although elimination of the H-bonds wi l l reduce the electrostatic binding 
affinity from this study, the overall binding can be enhanced by hydrophobic 
modification based on both experiments and solvation entropy analysis. For 
example, adding a methyl to a ligand may increase its surface area by about 40 A 2 , 
which equates to -1.5 kcal/mol of solvation entropy energy. This amount of energy 
could offset the loss of weak H-bond i f other interactions remain the same. Directed 
by this theoretical prediction, our medicinal chemists have generated new scaffolds 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
00

4

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



62 

by modifying P T - P 2 ' and P2 ' -P3 ' peptide bonds. Similar chemistry approaches 
have been disclosed by chemists in Dupont Merck (C. Decicco et al., poster in 214 t h 

A C S national meeting). These non-peptidyl inhibitors can achieve n M K i binding 
and good oral bioavailability. 

Figure 3. Schematic structure of the bound hydroxamate inhibitor (top) and 
relative H-bond strength of each N H and C O group (bottom). The ambiguous 
proton is indicated with two dash lines between Glu 219 and the inhibitor. The 
legend indicates whether a proton (H) is associated with Glu 219 of collagenase 
(P) or the ligand (L) in calculations. 

Conformational Change. One of the most challenging tasks in molecular 
modeling is to determine the bioactive conformation of a ligand. If one ligand has 
been determined by biophysical methods, we usually assume that its analogs wi l l 
bind to a receptor in an identical mode. This assumption is reasonable i f the binding 
data and multiple x-ray structures can justify it as in the case of the ZGfflLR analogs. 
However, x-ray analysis (29) and binding kinetics (30) also prove that a 
modification can lead to different binding conformations, such as those of Z R P L A 
(R * G). In the best situation, computer-docking(37) may generate a correct 
bioactive conformation. The question is whether one can verify the binding mode 
and predict its binding energy. 

The calculation of binding energy difference between conformationally 
different ligands is difficult for any detailed simulation method. To explore the 
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limitation of the F D P B + S E C method in dealing with this problem, we (26) use 
three approaches to calculate the binding energy difference between Z F P L A and 
Z C ^ L L . Because both protein-inhibitor complexes (pdb4tmn and pdb5tmn) have 
been solved crystallographically, either one can be used as a reference protein 
structure. A s shown in Figure 4, two direct calculations yield binding energy 

Figure 4. Structure of M e p L A and schemes to compute energy difference 
between Z F P L A and Z G P L L . The arrows indicate calculations from a 
reference system to a modified system. The values (taken from Table 1) along 
the arrows are calculated binding energy differences (in kcal/mol) associated 
with each process. 

difference of 4.79 and 2.74 kcal/mol, respectively. One of them closely matches the 
experimental binding energy difference of 2.94 kcal/mol. In these calculations, the 
modified systems are modeled by replacing the reference ligand with the one from 
the other x-ray structure while keeping the reference protein structures unchanged. 
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The reason for using only one protein structure is to reduce errors from the 
difference between the two protein structures. The third approach is composed of 
two calculations through a hypothetical inhibitor M e p L A . Both pdb4tmn and 
pdb5tmn are used as the reference structures to calculate the energy differences from 
ZF^A and ZGPLL to M e ^ A , respectively. This approach yields a binding energy 
difference of 4.4 kcal/mol between Z F P L A and Z C f l X . 

Although this approach produced a result no better than one of the direct 
calculations, it correctly modeled tighter binding of Z F ^ A like the two other 
approaches. According to the analysis of decomposed energies, the enhancement of 
the Z F T - A binding is attributed largely to the solvation entropy or "hydrophobic 
force". The binding mode of the Z G ^ L R N-terminal moiety appears to be 
electrostatically unfavorable. The study suggests that increasing lipophilicity of that 
moiety may enhance ZGPLR binding. 

Ionic Binding. When an ionic residue is identified at the active site of a receptor, it 
is natural to think of using a counter charge to enhance binding. Indeed, attaching a 
positively charged group, such as guanidinium or benzamidine(J2), to an inhibitor 
seems necessary to achieve respectable binding to thrombin(JJ), which has a 
negatively charged Asp 189 at the active site. However, a similar rule does not 
work for collagenase, which has a positively charged arginine at the bottom of the 
Sl 'pocket . Unable to achieve significant binding using negatively charged P I ' 
inhibitors, Singh et al.(34) attributed it to the desolvation penalty. If we look deeper, 
there is no desolvation problem for collagenase because experiments show that a 
hydrophobic residue can bind to the S1 ' site. The desolvation of the ligand should 
neither be an obstacle. In fact, an aspartate at P I appears to be necessary to bind to 
interleukin 1-p converting enzyme (ICE)(35), which has two arginines at the active 
site. Is there any simple rule to allow us to predict ionic binding qualitatively? This 
question is related to the issue whether electrostatic interactions stabilize or 
destabilize proteins. 

W e carried out a series of F D P B calculations for thrombin and collagenase 
to explore the controlling factor in charge-charge interaction. The binding 
contribution of charged residues was accessed by mutating them to neutral ones. 
W e found that none of the single residues, including Asp 189 of thrombin, can be 
said to contribute significantly to ion binding. The coulombic attraction and 
desolvation penalty are compatible to each other in most cases, and as a 
consequence, the net energetic differences are marginal. 

This can be qualitatively understood by the interplay between desolvation 
and Coulombic interaction. A charged residue at an active site of a receptor has a 
strong coulombic attraction with a counter charge. However, the desolvation 
penalty offsets the interaction. The overall binding contribution of the residue may 
not be as great as it appears in an x-ray structure. This does not mean that 
electrostatic is not important for ionized ligand binding. In fact, we found that all 
charges and dipoles in a receptor need to be considered to predict the binding. 

Figure 5 shows accumulated AGa between test charges and two enzymes, 
thrombin and collagenase. In both cases, side chain contributions dominate the 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
00

4

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



65 

overall AGa- For thrombin, the charged residues within 15 A of the binding ion 
have a significant binding contribution while the remaining residues help maintain 
the binding. In contrast, the Coulombic binding of collagenase reaches a maximum 
at about 10 A, then the trend reverses and ends up with a positive energy. In other 
words, collagenase wi l l not bind to any negative charge at the S T pocket. To 
compare with the experimental binding energies, we should exclude the first and 
perhaps second residues because they need to be desolvated to form a complex, 
which offsets their coulombic contribution significantly. These two examples show 
that the short-range electrostatic attraction may be necessary but not sufficient for 
the binding of a charged ligand. Charged residues that are distant from a receptor 
binding site may be more important than we had originally thought. 

Figure 5. Accumulated AGa for thrombin (TRB) and collagenase (HFC) with a 
counter charge at the active sites. 
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Currently, we are investigating the ionic binding of other binding systems. If 
the analyses for thrombin and collagenase are proven to be true in general, then we 
may just need a simple calculation to predict whether varying a charge on a ligand 
can enhance or reduce the binding affinity. To complete this study, more high-
resolution structures of binding complexes are needed. The protonation states of 
residues also need to be validated. In short, one cannot predict ionic binding by 
simply looking at the 3D structure of a receptor complex. 

Ligand-Based Design. Even without a receptor structure, the F D P B + S E C model 
can be useful for qualitative prediction. We can classify chemical modifications into 
two categories: electrostatic and hydrophobic. The former modification varies partial 
change in the ligand but has small or no size change. A n example is the modification 
of ethane to ethanol. The latter modification involves a significant change in size 
but, a small partial charge change, such as the change of ethane to propane. If a 
ligand modification involves both partial charge and size changes, we can always 
treat them separately through a hypothetical intermediate. 

Only AAGe needs to be considered in electrostatic modification. Among 
AAGe components, AAGa is very important to binding because it accounts for 
electrostatic interactions between a ligand and a receptor. For the solvation energies, 
the absolute value of AAGs>f is greater than that of AAGSib due to less solvent 
exposure in the bound state. As an approximation to equation 4, we can have: 

AAG = AAGa - AAGSJ. (8) 

This equation tells us that a modification of a nonpolar group to a polar group may 

enhance binding by lowering AAGa. However, the net gain wi l l be offset by 

increased AAGSff and could result in a net loss of binding (positive AAGe). 
A hydrophobic modification w i l l affect both AAGe and AAGn. Because there 

is no charge change by the definition, AAGa can be neglected. Our analysis reveals 

that the absolute value of AAGsJis always less than or equal to that of AAGs,b due 

to stronger protein-solvent interaction. In contrast, AAf is always greater than or 

equal to AAD in AAGn calculation (equation 7) because of less solvent exposure in 

the bound state. Substituting the leading terms of AAGe and AAGn into equation 2, 

we have another approximation: 

AAG = AAGSfb - 0.04AA/. (9) 

The first term in this equation favors a smaller hydrophobic modification because of 
a more solvated complex. The second term favors a bigger hydrophobic group due 
to the increase in the solvent accessible surface area. 

W e see that in each case, the overall binding energy difference depends on 
the balance of two energy components. In ligand-based design, we can only estimate 
one of these components (i.e., AAGSffov AAf), that explains why it is so difficult to 
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predict the outcome of a ligand modification. However, the estimation of these 
values may give us informative limits of likelihood loss or gain in binding upon a 
molecular modification. A useful conclusion from this analysis is that a bigger 
hydrophobic modification tends to enhance binding by lowering the AAGSff and 
increasing AAf. This is consistent with numerous Q S A R studies (36) of the 
relationship between binding and LogP, which is somewhat related to AGSJ and 
AAf. 

Limita t ions . In addition to the omission of van der Waals interaction and 
conformational energies, there are certain limitations in the application of F D P B + 
S E C . First, successful applications depend on the quality of x-ray structures of 
binding complexes. Statistical mechanics also requires that the structure resembles 
both ensemble averages of a reference system and that of a modified system. This 
approximation certainly wi l l not hold i f the modified interaction is too large such as 
charging a ligand or substantial conformational change. In these cases, qualitative 
results may still be obtained. 

Second, the protonation state of charged residues affects the quantitative 
results due to the effect of long range electrostatics. Fortunately, one can use F D P B 
to calculate the p K a shift of each residue. Because of the fast calculation speed, one 
can also calibrate protonation states against known binding activities. 

Third, bound water has not been modeled explicitly in the F D P B + S E C 
model. The technical problem is the uncertainty of the position of two water 
hydrogens, which cannot be determined by the x-ray crystallography. Theoretically, 
a ligand, a receptor, and a bound water form a tri-molecular complex. If a modified 
ligand or receptor replaces the bound water, the system becomes bimolecular 
binding. W e then need to address different degrees of freedom for the two systems. 
On the other hand, the high dielectric constant of ice supports the use of the 
continuum model for bound waters as an approximation. 

It is interesting to compare the binding properties of explicit water with those 
of continuum model. A n explicit bound water near a ligand and a receptor is usually 
regarded as a stabilizer of the complex showing multiple H-bonds to the ligand and 
the receptor. It is also said that replacing the water with a modified ligand wi l l 
enhance binding entropically due to the increased degrees of freedom of that water. 
The continuum model of bound water also has dual functions. In electrostatic 
calculations, the water enhances receptor-ligand binding because of solvating the 
complex. In nonelectrostatic binding, it reduces the affinity due to the enlarged 
S A S A of the complex (raises AAb thereby AAGn). More interestingly, both models 
agree that a bound water may enhance ligand-receptor binding due to enthalpy and 
weaken the binding due to entropy. 

F i n a l remarks. Most therapeutic targets do not have solved 3D-structures. This 
situation could soon change with the continuous increase of the 3D-structure 
database and advances in bioinformatics and protein homology modeling. Wi th over 
5,000 protein structures available today and no sign of slowing down, how to benefit 
from these resources has become one of the greatest challenges in pharmaceutical 
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research. One can imagine that a reliable binding energy prediction method wi l l 
significantly shorten the new drug discovery process and cut the cost of exploratory 
syntheses. Thus, F D P B + S E C and other binding energy calculation methods w i l l 
play an increasingly important role in rational drug design. 
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Chapter 5 

SmoG: A Ligand Design Method Based 
on Knowledge-Based Parametrization 

of a Solvent Reorganization Model 

Robert S. DeWitte and Eugene I. Shakhnovich 

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford 
Street,Cambridge, MA 02138 

In this chapter, we discuss S M o G (1-2) a de novo design 
program/methodology based on a knowledge-based approximation to 
the binding free energy. This approach is unique in that the 
representation of atomic interactions bears no relation to empirical 
force field terms, but rather is built solely on the consideration of the 
implicit behaviour of the solvent around various different solute atoms. 
The resulting scoring function evaluates instantaneously, and provides a 
smoothed potential energy surface of interaction. These features of the 
scoring function allow the space o f potential ligands to be well searched 
by a metropolis monte carlo molecular growth algorithm that efficiently 
suggests lead candidates. We show how using S M o G to suggest 
compounds, followed by molecular modelling calculations and 
chemical intuition can be a fruitful approach to designing novel lead 
compounds with a high likelihood of binding. 

Many programs have been written to try to design that bind to a particular protein with 
a known three dimensional structure (3-7). These methods have been built largely 
upon scoring functions that are either empirical (such as those used in molecular 
mechanics force-fields), rule-based approximations (for example, counting the 
numbers of hydrogen bonds, and computing buried surface areas), or some 
combination of the two o f these. Unfortunately, these scoring functions provide only a 
poor estimate of the binding free energy of a ligand candidate, a limitation which 
minimizes the potential impact o f these methods. The principal, and fundamental 
limitation o f such evaluations o f binding afflnitiy is that they make no implicit 

70 © 1999 American Chemical Society 
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reference to the change in the behaviour of the solvent atoms as the protein and ligand 
change from the unbound state to the bound state. 

Water has a strong ability to order itself, as in ice, into rigid structures. 
However, at and around room temperature, the tendency is rather toward disorder than 
order, as the various hydrogen bonds between the water molecules fluctuate in the 
amorphous liquid. In this state, the individual molecules participate in hydrogen 
bonds to lower the overall energy of the bulk, but the participation is fleeting: a 
favourable entropic condition. A solute in water, though, can affect this balance. 
Hydrophilic and hydrogen bonding species participate in hydrogen bonds to a lesser or 
greater extent than the native water molecules, and thereby partially jo in into the 
dance, with a modest and favourable impact on the solvation free energy. 
Hydrophobic solutes, however, cannot participate in such interactions with the water 
molecules themselves. The result is that the water molecules near the solute orient 
themselves so as to participate in roughly the same number of hydrogen bonds as when 
they were in bulk. The result is a semi-rigid layer o f water molecules encaging the 
solute, and this lower entropic state is manifest in poor solubility. Thus as in the 
problem of protein folding, hydrophobic effect supplies the driving force for protein-
ligand binding (8). 

Modell ing the hydrophobic affect without explicit reference to an ensemble of 
water molecules is an open challenge to the community interested in applications of 
computing to biomolecular association problems. Our approach is to consider the 
length scale over which water can propagate the effect o f a particular solute atom, and 
apply a model of this phenomenon to a database of protein-ligand crystal structures for 
parametrization. Bu lk water itself has considerable correlative organizational 
behaviour, in which the correlation length, or the range of the order in the liquid 
extends about two solvation shells from the atom in question, or about 5 angstroms. 
Thus it is reasonable to expect that the solvation correlations between atoms also 
extend over this range. Put simply, atoms at this distance are connected to one another 
through the solvent. 

It should also be born in mind that we are trying to address the question of lead 
discovery, and so we must be able to process a large number of candidate compounds, 
and evaluate them very efficiently in a broad classification of their prospective binding 
affinity. We are aided by the fact that we need not find the best solution to the 
problem, but rather should find a good solution to the problem. Thus, we can use an 
incomplete, optimization style algorithm to generate compounds. This, however, puts 
an additional strain on the evaluation methods, since it w i l l need to be used several 
times in the optimization process. Thus, the scoring function and search method must 
be extremely fast. Moreover, the molecules that emerge from the method should be 
viewed as sketches, or prototypes, providing the seed ideas for the design of a true lead 
compound. 

Methods 

Coarse-graining and the knowledge-based potential. We implement here a coarse
grained model with a corresponding knowledge-based potential which treats both 
ligand and protein in an all-atom representation, but assumes a simplified form of their 
interaction. The reader is referred to Reference 1 as wel l as references therein for a 
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description and justification o f the the process whereby statistical observations py can 
be convened into two-body parameters gy- that sum to a notion o f free energy. Here we 
simply state the result: 

1<P>\ 
where / and j refer to particular atom types in the protein and ligand respectively. <p> 
is a reference state which sets the zero for the energy scale, as the null hypothesis 
wherein all interaction types are equally likely. 

It should be made clear that the choice of the interaction model is intrinsically a 
choice o f length scales. We must determine the reasonable distances over which 
atoms project their chemical properties in order to accumulate the relevant statistics 
and apply the right model. Hence, knowledge-based potentials lend themselves 
naturally to coarse-graining techniques, where potential energy surfaces are smoothed 
by averaging all phenomena occuring below a cutoff length scale into properties 
describing the system at the specified length. 

In our application, we chose a simple contact model: atoms within five 
angstroms are in contact, and those further apart are not in contact. Wi th this 
definition, py above refers to the probability that, say, a polar carbon in a ligand 
molecule and a hydrogen bond acceptor in the protein, w i l l be found within five 
angstroms of each other. The parameters gy are used in the same way: each pair o f 
atoms, one from the ligand (i) and one from the protein (/), that are within five 
angstroms contribute their corresponding gy to the free energy estimate. 

One final aspect o f the model is that the number of atom types is expanded to 
include some notion o f the chemical personality o f the various atoms. In other words, 
carbon atoms are broken into the categories o f fatty carbons and polar carbons, oxygen 
atoms are either charged, hydrogen bond donors, or hydrogen bond acceptors. 
Similarly for nitrogen atoms, and some other atoms and ions are included, such as 
sulfur, phosphorus, fluorine, calcium and zinc. The model, together with the 
knowledge-based potential, is referred to as the design energy in this work. 

Database. The database of protein-ligand complexes used to detennine the gy 
parameters included the following complexes (all with R M S D ( 2.0 A): lart l bcd Ibex 
lb ic lbi t lbyb lean l cam lean lcao lcaz l chn l c i l lemp l coy lcra lc rq lese lesh 
les i lenc lerb l f e l l fem lfen l fkd l f k f l fkh lgca lgcd lhcb lhs l l h v i lhvk l h v l lhyt 
l i c m l i en l ine l i sc l ice l l i c H i d Hie l l i f l i ra l ist lmdq lmfa lmng lo lb lpa l lpbe 
lpbp l p p f lppp lray lraz l snm lsta lsty l s w m lsyd l th l l tng l tnh l tn i ltnj l tnk l tn l 
ltpp ltro 2aae 2acq 2acr 2acs 2acu 2che 2csc 2ctc 2cut 2fke 2mbp 2pal 2rnt 2tbs 2xis 
3cla 3cts 3dfr 3gch 3pat 3rnt 3sga 4csc 4gch 4pal 4sga 5cts 5sga 5tim 6rnt 7rnt 82 l p 
8est 8tln 8xia 9est. Structural waters, where present, were considered as part o f the 
protein. 

The parameters that result are available as supplementary material to Reference 
2. 

Coarse-graining and the search algorithm. In principle, the combinatorial search 
space for molecular growth or docking algorithms is a rough energy landscape. 
Searching such a landscape requires careful algorithms, and long search times. 
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Fortunately, however, the identification of candidate lead molecules is not a search for 
the lowest free energy complex, but rather a low free energy complex (or several). 
Sti l l , the search is a difficult process because o f the multiple minimum problem. If the 
search space can be made more smooth by coarse graining, however, the searching 
method need not be as sophisticated. For this reason, S M o G employs a metropolis 
monte carlo growth algorithm. Such a search procedure quickly samples the 
configuration space and the molecular space under the bias o f the interaction potential 
(knowledge-based energy in this case). In a coarse-grained ligand design search space, 
a simple, hasty, search algorithm such as the one presented here can do very wel l in 
finding low energy configurations. 

Monte-Carlo Molecular Growth Algorithm. Directly in the binding region of the 
protein, simple organic molecules are generated by joining fragments with single 
bonds. Each step o f the molecular growth proceeds as follows: two hydrogen atoms 
are selected: one from the fragment to be added, and one from the structure as 
generated so far. The new fragment is placed such that the hydrogen atoms are 
displaced and the atoms formerly bonded to those hydrogen atoms now form a single 
bond with a standard bond length. This procedure ensures that the new bond angles 
and bond lengths are reasonable approximations. Finally, the new functional group is 
oriented by torsional rotation about the new bond. Table I lists the fragments used in 
molecular growth. 

Table I. Fragments used in the small molecule growth algorithm. Adapted with permission from 
reference 1. 

Amide Cyclohexene Methane Pyrimidine 
Amine 1,2-Dithiane n-Butane Pyridine 
Carbonyl Ethane Napthalene Pyrrole 
Carboxylic acid Ethene Nitrile Sulfate 
Chloride Fluoride Nitro Sulfide 
Cyanide Fur an Phenyl t-Butane 
Cyclooctane Glucose Phosphate Tetrahydrofurane 
Cyclopentane Hydroxyl Propane Tetrahydrothiene 
Cycloheptane Indole Propene Thiophene 
Cyclohexane Iodide Purine Trifluoromethane 

In this manner, beginning with simple H2 in the binding site, a molecule of any 
desired size can be generated, by continuing to add fragments. Notice that the growth 
is inherently branched because at each growth step, any hydrogen atom on the present 
structure is a potential site o f growth. 

Each fragment that is placed is oriented by torsional rotation about the new 
bond in fixed increments and all those orientations that are not sterically hindered are 
subject to energetic evaluation. That rotamer with the lowest energy is considered as a 
candidate for acceptance into the new molecule. This acceptance is determined by the 
Metropolis monte carlo criterion which compares the new energy per atom with that 
before this growth step. A n y decrease is accepted, and any increase is accepted with 
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probability exp[-Ag/T] where g=G/N is the free energy per atom, and T is an 
algorithmic temperature. 

The preliminary selection of lowest allowed rotamer has two positive effects. 
First, it biases the molecule more quickly to low energy, since random selection of 
rotamers would lead to significantly more metropolis failures. Second, it is an indirect 
selection toward the tightest possible steric complementarity. 

The Metropolis decision of acceptance or rejection of the new fragment is in 
place to allow the energy per atom to increase occasionally, as would need to be the 
case i f the small molecule had grown into a tight steric region, and had no other 
recourse but to grow into the solvent or some other unoccupied region, where it would 
interact only marginally with the protein. This feature also provides the added benefit 
o f generating molecules with bridging fragments where the bridge itself is not 
necessarily a strongly interacting part o f the molecule. 

The reader is referred to Reference 1 for a description of the analysis o f the 
operating parameters used in this method. Under the operating conditions of sixty 
degree torsional increments, seventy percent V a n derWaal contact radius and an 
algorithmic temperature of 10.0, each molecule of about twenty heavy atoms can be 
generated in a few seconds on a 100MHZ pentium computer running Linux. 

L i g a n d Design Methodology. Figure one provides a general outline for ligand design 
using the S M o G approach. 

A t the first stage, it is helpful to get an appreciation for the binding site (for 
instance its shape and types of intermolecular interactions it may support) by allowing 
S M o G to generate a large number of molecules in the binding site. Our approach has 
been to generate one thousand molecules and record the structures of the best fifty. 
This computation is generally completed in a few hours. B y viewing the molecules 
that fit into the space of the binding site, and form complementary chemical 
interactions, particularly paying attention to those molecular details that arise 
frequently, the chemist gains an immediate understanding of what molecular scaffolds 
are likely to be fruitful leads to follow. For example, one may observe that several of 
the high scoring molecules involve specific hydrogen bonds, attained through a 
specific functional group in a specific orientation. Alternatively, one may learn that 
the presence of lipophilic groups in a certain region are responsible for the high score 
of several other ligands. This 'consensus based' qualitative understanding forms the 
basis for further work with S M o G . 

Whereas the high score of the molecules in stage one is usually due to the 
presence o f one wel l placed molecular fragment, the desire at stage two is to build 
molecules that combine several o f the positive features observed in stage one. This is 
done by selecting a few representative molecules from stage one, removing the parts o f 
the molecule mat are not important, and using the remaining strongly interacting, 
molecular fragment as a restart fragment. S M o G has the ability to continue growth 
from any molecule provided as input by selecting hydrogen atoms on it as points of 
further growth. Furthermore, the user may determine at which of these hydrogen 
atoms growth is allowed. For each moiety from stage one that is used as a restart 
fragment, a new line o f molecules can be generated (generally another 1000 of which 
the best 50 are recorded). Each of these molecules w i l l contain the tailored 
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Guided Tour of the Binding Site 

Generate many molecules and observe the qualitative features that 
arise with a high frequency among those that score best. Note the 

potential interaction types that are favored. ] 
II 

Growth from a Template 

Select some parts of molecules from the previous observations to use as 
restart fragments. Allow SMoG to generate molecules from specific sites 

on these fragments. This allows the user to select the direction of 
molecular growth in attempt to include the features observed above. 

Quantitative Analysis 

III Use an empirical force field to minimize the energy of the complex formed 
with each of the best molecules from stage II. Those molecules that 

score well with both the SMoG free energy estimate and the empirical 
interaction energy are scrutinized further. 

IV 
Qualitative Analysis 

These high scoring molecules are scrutinized on the basis of qualitative 
interactions, chemical viability, synthetic feasibility, solubility, as well as 
observation of the strcutural changes the ligand induces in the protein 

Iterate 

Optimization 

A combination of chemical intuition and SMoG assisted optimization is 
performed to enhance the quantitative and qualitative score of the best 

molecules. Generally this involves atomic and/or functional 
substitutions, growth from a specific site, or deliberate inclusion of salt 

bridges or hydrogen bonds, or perhaps just an effort to increase the 
solubilitv of the molecule 

Figure 1. The stages of ligand design with S M o G . 
(Reproduced from reference 2. Copyright 1997 American Chemical Society.) 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
00

5

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



76 

interactions as wel l as a variety o f other positive features. Thus, at the end of stage 
two, there w i l l arise from each line o f molecules a small number o f candidates that 
incorporate several qualitative as wel l as quantitative interactions. A t this point, a 
large part o f the combinatorial problem o f ligand generation has been overcome (i.e.: 
the architecture o f the molecule has been decided). Depending on the situation at 
hand, it may be desirable to repeat stage two once more with some lines of molecules 
to optimize the collection of interacting functional groups even further. 

Generally after stage two, one might have a few dozen structures to consider in 
the subsequent stages. A t this point, it is important to determine which of these 
molecules to focus on in more detail during the subsequent design stages. It is 
important to realize that S M o G does not include an intramolecular interaction 
potential in its growth. Therefore, one should relax the slight strains that the 
molecules are carrying through minimization of the protein-ligand complex with an 
empirical potential (for example C H A R M M ) . The empirical interaction energy of 
these relaxed complexes (especially the electrostatic component) is another useful 
measure o f the quality o f a molecule because the S M o G design potential does not 
explicitly account for electrostatic interactions between the molecule and the protein, 
and thus slightly undervalues hydrogen bond and salt bridge formation. Conversely, 
since hydrophobic interactions are largely solvent entropy effects, empirical 
calculations o f vacuum interaction enthalpies undervalue the contribution o f nonpolar 
interactions to binding free energy. Thus the two measures o f interaction strength are 
somewhat complementary. Hence, the molecules that one should continue to focus on 
for the remainder o f the design stages are those which have low C H A R M M and 
S M o G energies. A t present, we are moving to include explicit terms to handle 
electrostatic interaction events. 

A t stage four, the remaining molecules (perhaps a dozen) need to be 
scrutinized qualitatively with the goal o f optimization in mind, rather than exclusion. 
The criteria with which to judge the molecules include chemical stability, ease of 
synthesis, internal strain energy, strain induced in the protein, and solubility. One 
should also determine i f subsequent growth or manual optimization can introduce 
more hydrogen bonds, or capitalize on other features of the binding pocket, such as 
stacking with delocalized rc-bonding systems. It is clear from our experience that a 
few molecules w i l l emerge as having greater potential than the others because of the 
nature of the interactions they incorporate presently as well as features that suggest 
either simple manual changes leading to improvement, or directions in which 
automatic growth may enhance the binding interactions (using the whole current 
molecule as a restart fragment and allowing growth at only one or perhaps a few select 
hydrogen atoms). 

In the fifth stage, the modifications suggested in stage four are introduced to 
the few select molecules that have the most potential, yielding yet another generation 
of structures which should be scrutinized quantitatively and qualitatively in stages 
three and four. 

In the process o f designing a molecule that is likely to be a strong binding 
ligand, stages three, four and five may need to be iterated several times until a 
candidate is found which is qualitatively sound and scores among the best molecules 
according to S M o G and C H A R M M . A s the process converges to a ligand, one may 
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wish to use other modelling tools to analyze the molecules and enhance decision 
making. These may include conformational analysis to ensure that the binding mode 
of the molecule is not a highly strained conformer, and molecular dynamics simulation 
in solvent to observe the stability of the predicted complex 

Results. 

The Scoring Function Correlates Well with Experimental Binding Free Energies. 
In order to test the correlation between experimental binding free energies and the 
S M o G design procedure, S M o G was applied to the three protein-ligand complex 
systems for which structural and binding information has been published and is readily 
available. These examples include Purine Nucloside Phosphorylase (9-14), Src SH3 
domain specificity pocket (15-17), and Human Immunodeficiency Virus-1 Protease 
(18-19). The molecular structures of each compound tested are presented in reference 
1. Here, we merely summarize the results in figures 2 through 4. 

Table II summarizes the overall correlation findings quantitatively. 

Table II. Summary of Correlation Data. Adapted with permission from reference 1. 

System Correlation Coefficient Number of Points Probability 
P N P 0.80 17 0.0020 
SH3 0.81 8 0.1109 
fflV 0.77 11 0.0501 

The Monte Carlo Molecular Growth Algorithm Search is Sufficiently Exhaustive. 
Figure 5 demonstrates that the knowledge-based potential respects the native ligand 
(whose energy is marked as a dark stripe) as having extremely low energy. Moreover, 
molecules with a comparable energy are rare, but attainable in reasonable computation 
time since approximately five percent o f generated molecules are comparable to the 
native ligand in each example. 

The Methodology Produces Qualitatively and Quantitatively Interesting Ligands. 
The C D 4 protein is an immunoglobin-family transmembrane receptor expressed in 
helper T-cells (Bour et. al.) It participates in contact between the T-cells and antigen-
presenting cells by binding to the nonpolymorphic part o f the class II major 
histocompatibility complex (MHC-II) protein, which is followed by the activation of 
the bound L c k kinase which leads to downstream activation events in T-cells. The 
Human Immunodeficiency Virus (HIV) gains entry into a T-cell by binding protein 
gpl20 to the C D 4 receptor. This gpl20 binding site in the vicinity o f Phe 43 of C D 4 
was the target for ligand design in this project (see Figure 8b). 

Among the possible interactions that arose in stage one of the design process, it 
was apparent that n-n interaction with the phenyl ring of Phe 43 was important, as well 
as the formation o f hydrogen bonds in the narrow pocket bounded by Lys 46 and Asp 
56. After one pass through the five stages, the first generation of molecules was 
evident. These are shown in Figure 6, where one can see the common elements of a 
hydrogen-bonding core and a hydrophobic moiety in the same relative orientation in 
most molecules. Qualitative features, as wel l as the data in Table i n led to the 
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Purine Nucleoside Phosphorylase 
Correlation between experimental and predicted Ki's 

l.E-06 

-21 -19 -17 -15 

SMoG score per heavy atom 

Figure 2. The correlation of measured binding constant (experimental result) with 
S M o G score (theoretical prediction) for a set of Purine Nucleoside Phosphorylase 
inhibitors that are not highly sensitive to the concentration of phosphate in the 
solution. 
(Reproduced from reference 1. Copyright 1996 American Chemical Society.) 

HTV-1 Protease 
Correlation between experimental and predicted Ki's 

• t 

l.E-09 -J , , , 1 
-15 -14 -13 -12 -11 

SMoG score per heavy atom 

Figure 3. The correlation of measured binding constant (experimental result) with 
S M o G score (theoretical prediction) for a set o f HIV-Protease inhibitors. 
(Reproduced from reference 1. Copyright 1996 American Chemical Society.) 
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SH3 Domain 
Correlation between experimental and predicted Ki's 

l.E-02 

-9 -8 -7 -6 -5 

SMoG score per heavy atom 

Figure 4. The correlation of measured binding constant (experimental result) with 
S M o G score (theoretical prediction) for a set o f SH3 Domain ligands. 
(Reproduced from reference 1. Copyright 1996 American Chemical Society.) 

1ela (23) 1 hew (43) 1nsd(34) 

Energy per heavy atom Energy per heavy atom Energy per heavy atom 

Figure 5. The distribution of S M o G score for the design of 1000 molecules of the 
same size as the native (i.e.: an extant) ligand whose number of atoms is shown in 
brackets. In each case, the S M o G score o f the native ligand (shown in a heavy 
bar) lies in the tail o f the distribution. Roughly 5% of molecules generated by 
S M o G score as strongly as the native ligand (or better). 
(Reproduced from reference 1. Copyright 1996 American Chemical Society.) 
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Figure 6. First generation ligand candidates for C D 4 , drawn so as to highlight the 
consensus in the selection and placement of similarly interacting fragments. 
(Reproduced from reference 2. Copyright 1997 American Chemical Society.)  O
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selection of molecule 41 for further attention. Figure 7 and Table I V describe the 
evolution, through S M o G assisted optimization and manual editing suggested by 
chemical intuition, from Molecule 41 to the best candidate, molecule 41h. In 
particular, molecules 41b, 41e-g are the result o f manual editing (guided by intuition) 
to improve the 7i-stacking interactions with Phe 43, and molecules 41c-d are the result 
of applying S M o G to extension o f 41b into a small hydrophobic pocket. These 
extensions were not quantitatively advantageous (the pocket was slightly too small). 
Molecules 41h-i derive from an observation that the significant strain in 41e (a strong-
scoring candidate) could be reduced by locking its bound conformation through a 
bridge that creates a fairly rigid fused ring system. O f these, 41h was the best 
candidate (the heteroatom allows the adoption of the interacting conformation of 41h). 
In this and all other cases, manual editing was performed the 3D Molecular Editor 
facility o f Quanta, and subsequent minimization of energy with C H A R M M . 
Evaluation of these results involves reference to the C H A R M M interaction energy and 
recalculation of the S M o G score. 

Figure 8 shows the three dimensional structure of Molecule 41h in the gpl20 
binding site of C D 4 . The interactions present include partial 7i-stacking with Phe 43, 
as wel l as four intermolecular hydrogen bonds with Lys 46 and Asp 56, and one 
intramolecular hydrogen bond which stabilizes the orientation of the pyridine group. 
The seven membered fused-ring bridge gives this molecule a great deal of rigidity in 
its bound conformation. 

Table m. Quantitative analysis of the first generation CD4 candidates shown in Figure 6. 
Adapted with permission from reference 2. 

Molecule S M o G Score C H A R M M interaction 
per heavy atom Energy (kcal) 

8 -26.2 -82.3 
17 -30.0 -80.9 
32 -28.5 -53.6 
33 -36.3 -70.6 
35 -26.8 -80. 
41 -45.7 -99. 
45 -26.9 -59.8 

Discussion. 

In this chapter we have shown that ligand design with S M o G as the first step and a 
continual resource has several advantages stemming principally from the speed with 
which it can provide an approximate prediction of relative binding free energy. In 
particular, the program can focus the chemist's search for novel lead compounds by 
suggesting novel scaffolds, and chemical architectures for which the desolvation 
driving force is expected to be strong. Within this framework, using a combination of 
modelling tools, intuition and S M o G calculations, the chemist can quickly move 
toward a set o f compounds that are more highly optimized, even with respect to 
chemical synthesis (Reference 2 contains further discussion about revising compounds 
to achieve synthetic feasibility). 
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4lg 4ih 4 1 1 

Figure 7. Second generation ligand candidates for CD4 . Based on molecule 41 
these candidates were derived by a combination of manual alteration and S M o G 
generated extension, always guided by both intuition and S M o G and C H A R M M 
scores. (Reproduced from reference 2. Copyright 1997 American Chemical Society.) 
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Figure 8. A highly optimized candidate (41h) for CD4 , which forms 5 hydrogen 
bonds, as well as 7i-stacking interactions with Phe 43. (a) 2D molecular structure, 
(b) The gpl20 binding site of C D 4 with ligand candidate in place, (c) & (d) Space 
filling models of the predicted complex. 

(Reproduced from reference 1. Copyright 1996 American Chemical Society.) 
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Table IV. Quantitative analysis of the second generation CD4 candidates shown in Figure 7. The 
strain energy is calculated as the difference in internal energy between the bound conformation 
and the conformation resulting from gas phase minimization with CHARMM. Adapted with 
permission from reference 2. 

Molecule SMoG Score C H A R M M Energies (kcal) 
per heavy atom 

Interaction Strain Net 
41 -45.7 -99 14.4 -84.3 
41b -47.9 -139 20.0 -119.0 
41c -45.1 -128 20.7 -107.3 
41d -46.1 -120 33.2 -86.8 
41e -50.6 -112 36.6 -75.4 
41f -50.5 -116 20.1 -95.9 
41g -49.4 -82 15.0 -67.0 
41h -49.9 -119 22.5 -96.5 
411 -48.0 -86 20.5 -65.6 

One advantage o f the design methodology proposed in this chapter is the 
ability to improve the qualitative features (size, shape, location, connectivity, synthetic 
feasibility, 7i-stacking, hydrogen bonds, salt bridges, etc.) o f the molecules without 
reducing their quantitative scores. Because o f this, the quality o f the ligands that can 
be generated is simply a product o f effort, insight and intuition on the part o f the user. 
However, the insight and intuition are only needed as analysis tools, since S M o G 
continuously provides suggested alterations and extensions o f molecules that form 
excellent chemical and spatial complimentarity with the protein binding site. In this 
sense, S M o G overcomes the otherwise intractable combinatorial task of generating 
optimal molecular scaffolds for scrutiny and optimization. 

Careful examination of the Tables of S M o G scores and C H A R M M interaction 
energies reveals that those subtle molecular features that were added manually to take 
advantage o f a hydrogen bonding opportunity are not reflected very strongly in the 
S M o G score, but are reflected in the C H A R M M interaction energy (particularly the 
electrostatic component). Conversely those attributes which correspond to increased 
hydrophobic interaction are reflected in SMoG's score, but not in the C H A R M M 
interaction energy. This evidence supports using both measures of interaction energy, 
since their weaknesses and strengths are complimentary. It also implies that the 
accuracy o f SMoG's prediction o f binding free energy may be improved by adding 
specific terms to the form of the interaction potential that reflect electrostatic 
interactions such as hydrogen bonds and salt bridges. 

SMoG's limitations include those implied in the simple methods with which 
chemical geometry is handled: inter-fragment bond lengths and angles are all assumed 
to be standard, and unvarying; the protein structure is considered fixed; and steric 
repulsions are either on or off, depending on a simple distance test. Other limitations 
are implementation dependent, and the program has been designed to allow flexibility 
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in the choice o f operating conditions. For example, smaller angle steps can be chosen 
to perform calculations more carefully, lower temperatures can be chosen, and the 
fragment library can be expanded. 

O f course, as is the case with any design method, the crucial test o f SMoG's 
merit w i l l include the synthesis and measurement o f the binding constant o f a 
candidate ligand that was the direct result o f S M o G design. We are currently pursuing 
this line o f development vigorously in collaborative investigation. Preliminary 
experimental results with Carbonic Anhydrase are encouraging, but structural 
confirmation is still in progress at the time of writing. 

We are confident that this approach, which is unique in many aspects, 
including the nature and source of the interaction potential and the growth algorithm, 
has much to offer the medicinal chemistry community because of its efficiency and the 
reliability o f its scoring method. Moreover, as this brief account demonstrates, the 
approach to designing ligands is extremely flexible and fruitful. 
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Chapter 6 

The Evaluation of Multi-Body Dynamics for Studying 
Ligand-Protein Interactions: Using MBO(N)D to Probe 
the Unbinding Pathways of Cbz-Val-Phe-Phe-Val-Cbz 

from the Active Site of HIV-1 Protease 

Donovan Chin 1, David N. Haney 2, Katya Delak 1, Hon M. Chun 1, 
and Carlos E. Padilla 

1 Moldyn Inc., 955 Massachusetts Avenue, Cambridge, MA 02139 
2 Haney Associates, 4212 93rd Avenue SE, Mercer Island, WA 98040 

The speed and accuracy of the M B O ( N ) D multi-body dynamics 
program was compared to atomistic methods for studying the unbinding 
pathways of Cbz-Val-Phe-Phe-Val-Cbz (A74704) from HIV-1 protease 
using applied force simulations. The results from the applied force 
simulations using M B O ( N ) D show good comparison with the atomistic 
methods for the extraction forces, range of movement of the flaps of the 
protease, and residues encountered along the unbinding pathway; 
M B O ( N ) D , however, was faster than the atomistic method by a factor 
of eight. The applied force simulations were carried out as an example 
of M B O ( N ) D ' s ability to permit stable simulations with large time 
steps on systems that have large conformational changes. Applied 
force simulations provide information on the unbinding pathways 
between A74704 and HIV-1 that involve movement of the flaps of the 
protease—information that would be difficult or impossible to obtain 
through typical equilibration simulations. Both M B O ( N ) D and 
atomistic simulations suggest that the tips of the flaps of the protease 
may be important in the migration of the ligand into the active site. The 
implications of using M B O ( N ) D to study large conformational changes 
over long time scales for rational drug design are discussed. 

This paper describes the use of a very fast multi-body dynamics method to simulate 
the unbinding pathways of the inhibitor, Cbz-Val-Phe-Phe-Val-Cbz (A74704), from 
the aspartyl protease of the human immunodeficiency virus (HIV-1). Simulating the 
unbinding pathways permits studies of protein-ligand adhesion forces, thermodynamic 
profiles of ligand binding into the active site, and large conformational changes that 
would not occur under equilibrium conditions. The two objectives are the following. 
First, to compare M B O ( N ) D and atomistic methods, and show that M B O ( N ) D is 
significantly faster than atomistic methods with comparable accuracy for the essential 
dynamics. Second, to present applied force simulations (AFS) methods as a potential 

© 1999 American Chemical Society 87 
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new way of using molecular dynamics to study events that are inaccessible by current 
equilibrium methods. 

The aspartyl protease has been the center of attention for drug discovery 
research for several years because its activity is central to the assembly and maturation 
of pathogenic HIV-1 by proteolytically cleaving the polyprotein products of the gag 
and gag-pol genes.(l) Several H I V protease crystal structures have been 
determined,(2,3) and their structures have led to the design of numerous H I V protease 
inhibitors—some of which have made it to market as treatments for the H I V 
infection.(4) This enzyme is homodimeric; it has a globular shape and consists of two 
separate polypeptide chains (99 residues each) bound together non-covalently to create 
the active form (Figure 1). 

Early studies of the H I V protease structure showed that its conformation was 
substantially different depending on the presence or absence of a ligand bound at the 
active site.(5) More specifically, residues 43-56 on each of the monomers form an 
extended P hairpin structure that were either close together (bound ligand) or farther 
apart (unbound ligand). These flexible P hairpin structures are commonly referred to 
as "flaps." Mutations at the tips of these flaps—residues 45-53—have been 
implicated in conferring resistance to known inhibitors presumably because a 
particular mutation may reduce the mobility of the flaps thereby restricting the access 
of the inhibitor to the active site;(6) it is therefore of significant interest to understand 
the motions of these flaps. 

The opening and closing of the flaps is likely to occur on time scales much 
longer than is currently accessible to typical molecular dynamics simulation 
(picoseconds to nanoseconds). Current simulation methods—where speed is derived 
from algorithmic approaches and not parallel processing—fall short of the 
computational speed needed for studying the opening and closing of the flaps.(7-19) 
W e therefore use the following two strategies to address the problem. First, the use of 
a multi-body dynamics method that increases the computational speed by retaining 
only those variables that are associated with global motions. Second, the use of an 
applied force simulation (AFS) protocol that mimics the mechanism of atomic force 
microscopy ( A F M ) experiments to study the large conformational changes of the flaps. 
The use of the A F S protocol is particularly important because it allows the study of 
events that occur naturally on time scales much greater than is accessible from 
equilibrium simulations.(20-22) Each strategy is discussed in turn. 

M B O ( N ) D or Mult i -Body Order (N) Dynamics is a new molecular dynamics 
code developed by Moldyn that is designed around the concept of reduced variables 
and multigranularity.(23,24) The reduced variable approach of M B O ( N ) D is based on 
multi-body dynamics: that is, where groups of atoms are organized into interacting 
bodies in order to eliminate uninteresting high frequency events and permit much 
larger time steps than atomistic methods. Multigranularity is achieved in M B O ( N ) D 
by the simultaneous simulation of atoms, rigid bodies, and flexible bodies—flexible 
bodies are achieved by the addition of a few low frequency elastic modes. The mixing 
of body sizes and shapes can be customized for each system, property, or both. W e 
have obtained increased computational speed by factors of up to 30 over traditional 
atomistic methods with a variety of molecular systems.(24) The computational speed 
of M B O ( N ) D is due primarily to the larger time steps. 
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Despite the speed of M B O ( N ) D , it would not be possible to simulate the 
binding or unbinding dynamics of the A74704-HIV protease at this level of atomic 
detail ( M B O ( N ) D currently uses an atomistic force field as discussed in the 
methodology section). We therefore chose to "force" the unbinding event by actively 
pulling the ligand from the binding site. That is, we effectively "compress" the 
experimental time scale down to that accessible though simulations. The strategy of 
A F S is an interesting and new approach that has resulted in new insight into the 
dynamics of a variety of different systems. The interest in A F S was inspired by A F M 
experiments where the most obvious experimental measure that can be compared to 
A F S is the extraction forces. Examples of A F S from the literature are the following. 
Grubmueller et al. carried out A F S on the biotin-streptavidin complex, and suggested 
that in the slow pulling regime there is a linear response of the extraction force to the 
rate of pulling. Their data in this slow region were extrapolated to the experimental 
pulling rate and extraction force, and the adhesion events associated with the simulated 
extraction forces studied in detail.(21) Schulten, et al. has recently argued that it may 
not be possible to accurately extrapolate extraction forces from the nanosecond time 
scale to microseconds (experimental scale),(25) but has nevertheless further defined 
the usefulness of A F S in studying events that occur on time scales several orders of 
magnitude greater than nanoseconds. Such events include studying the stick-slip 
motion of protein-ligand interactions during unbinding,(26) and in predicting a 
plausible binding pathway between bacteriorhodopsin and retinal.(25) Using a slightly 
different A F S protocol, Konrad et al. showed that the experimental extraction force 
(within the errors of the A F S and experimental data) of pulling apart the strands of 
D N A duplexes could be computed on the nanosecond time scale.(22) The 
conformations from their simulations of the D N A extension were helpful in 
understanding known experimental force-distance curves: that is, in the case where the 
D N A duplex apparently doubles in length while maintaining its original base 
parings.(22,27) It seems, therefore, that A F S can help in understanding the molecular 
motions, interactions, and deformations that occur during the aggregation of the 
biomolecules studied so far, but the ability of these methods to generate meaningful 
absolute values of the extraction force remains unclear. 

It is important in A F S to apply the force slowly enough such that the system 
has time to relax energetically to the perturbation. These types of applied force 
simulations, therefore, can be slow (on the order of nanoseconds); multiple runs at 
different pulling rates (necessary to achieve convergence of the extraction force) only 
magnify the problem. Our solution to this problem is to carry out A F S using 
M B O ( N ) D . 

The ability to efficiently simulate "rare" (on the time scale accessible to 
equilibrium methods) but important events in biomolecular recognition is powerful; 
the ability to validate these results with experiment is necessary. The usefulness of 
A F S in rational drug design, however, is not yet well defined. To this end, we have 
begun an extensive study here at Moldyn to evaluate A F S methods, and to test the 
extent to which M B O ( N ) D can increase the efficiency of these calculations: the work 
described in this paper represents our preliminary results. 
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Methods 

M B O ( N ) D is currently interfaced to the C H A R M M molecular modeling program.(28) 
Most of the simulation conditions used with M B O ( N ) D are similar to those used with 
atomistic methods; differences between the simulation conditions of M B O ( N ) D and 
C H A R M M are noted below. 

Starting Structure. The initial structure of the HIV-1/A74704 complex was obtained 
from the Brookhaven databank (pdb code: 9HVP) ; only the coordinates of the protein 
and the ligand were used subsequently. The placement and orientation of polar 
hydrogens were added to the complex using HBUILD.(29) We used the P A R A M 1 9 
parameter set from Harvard University,(28) which involves the united atom 
representation for non-polar atoms. The non-bond conditions were those from 
P A R A M 1 9 : interactions were updated heuristically and cut off beyond 8 A; energies 
were shifted to 0 at 7.5 A. Solvent was implicitly modeled through the use of a 
distance-dependant dielectric in the Coulombic interactions. These conditions are not the 
most optimal for realistic studies of protein-ligan unbinding, but are adequate for 
comparative studies between M B O ( N ) D and atomistic methods. 

High-energy deformations and stresses in the crystallographic complex were 
removed from the complex by minimizing the energy of the system in the following way. 
We first constrained the main chain atoms ( -CONCa-) using a harmonic force constant 
of 1000 kcal/mol«A, and applied Adopted-Basis Newton Raphson ( A B N R ) for 500 
steps; we then performed another 500 steps of A B N R without constraints. The root-
mean-square deviation (RMSD) between the non-hydrogen atoms of the minimized 
structure and the crystal structure was 0.7 A for the main-chain atoms, and 1.5 A for the 
side chain atoms. This energy-minimized structure was used as the starting point for 
both the atomistic and M B O ( N ) D simulations. 

Applied Force Simulations. We extracted the ligand from the protein by 
applying a protocol similar to that of Konrad (Scheme I).(22) In this method, a constant 
force is applied between a fixed point far away from the complex (45 A) and a proximate 
atom on the ligand; the center of mass ( C O M ) of the protein was held in place by a 
harmonic force constant. A n important point is that the protein was allowed to rotate 
about its C O M , which allows for some stresses incurred during the pulling to be 
relieved. Clearly the initial orientation of the pulling vector (Scheme I) is important to 
the results of the system. We have hypothesized that the current orientation of the 
pulling vector relative to the complex in Scheme I is plausible (although we know of 
no data that involves A F M and this H I V complex). Our primary goal in this paper, 
nevertheless, is to highlight the capabilities of M B O ( N ) D when compared to atomistic 
methods, and therefore the orientation of the pulling vector need not be the optimal 
one. 

Temperature was maintained throughout the simulation by periodically scaling 
the velocities every 0.5 ps such that the average total temperature was 298 K . The total 
simulation length consisted of many short 10 ps segments. After each 10 ps segment, the 
value of the applied tension was increased by a constant amount, and the simulation 
repeated. The values of the applied pulling force increments between the ligand and a 
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point far from the protein ligand complex were 556, 278, 139, 69.5, 34.8, 27.8, 20.9, 
13.9, and 6.95 piconewtons (pN) per 10 ps. The lengths of time for these runs ranged 
from 40 ps (for the fastest applied pulling rate) to 1030 ps. (for the slowest pulling 
rate). The cycle of incrementing tension and equilibrating was repeated until the 
minimum distance between the ligand and protein was > 8 A (that is, beyond the non-
bond cut off). 

Atomistic Simulation. The constant temperature simulation was carried out at 
298 K using the Leapfrog integrator in C H A R M M for each of the 10 ps cycles 
mentioned in the pulling protocol. A time step of 1 fs was used along with S H A K E 
constraints applied to covalent bonds that involved hydrogens. We did not use a higher 
time step for the atomistic method because a 1 fs time step with S H A K E represents a 
typical use for the Leapfrog integrator and the C H A R M M force field; in fact, this 
combination may be the most meaningful.(30) 

Substructuring of Atoms into Bodies. A n integral part of using M B O ( N ) D is 
grouping the atoms in a molecule into an appropriate combination of bodies, effectively 
subdividing a macromolecule into smaller chemically and physically meaningful 
components.(24) The bodies can either be rigid or flexible. The dynamics of flexible 
bodies can be modeled by a reduced set of elastic modes, emphasizing the lowest 
frequency modes that correspond to the overall motions of the body. High-frequency 
modes (local vibrations) that are not important to the event of interest are 
eliminated.(8,31,32) The bodies are allowed to undergo large motions relative to each 
other, but within each body, the relative motions among the grouped atoms is small 
(flexible body) or zero (rigid body). 

Substructuring of the 9HVP Complex. Reproducing the proper global 
motions with M B O ( N ) D requires that the important hinges are identified correctly. 
Determining these hinge points can be difficult for a biomolecule, however, from a 
single static or quasi-static crystal or N M R structure.(33) We therefore used two 
crystal structures—open (3HVP) and closed (4HVP)—to provide us with more 
pseudo-dynamical information on the hinges for H I V protease. Using these two 
structures, we characterized the hinge motion of H I V protease by analyzing the <|> and 
\\f angles (Figure 2a), the temperature factors (Figure 2b), and the pseudo-dihedral 
angle (Figure 2c; defined as the dihedral between four consecutive Coc atoms). These 
analyses all have similarities in the positions of "peaks" of the motion. That is, high 
motion is seen near residues 10, 17, 37-39, 49-52, 56, 60, 68-69, 73 and 81 (Figure 2a-
c). W e therefore expect to define smaller bodies in these regions to allow more 
mobility. 

Our approach to substructuring H I V protease—based on extensive experience 
on other protein complexes—involved the following steps. First, we created bodies 
roughly 2-3 residues in size with "hinges" at the <|> dihedral for the entire protein. 
Second, we inserted smaller bodies (one residue in size) for those regions of higher 
motions as noted in the above analyses. For example, there are many small bodies in 
the flaps where more motion is expected. We w i l l refer to this substructuring strategy 
as " h i " (Scheme II and Ilia), which resulted in 62 bodies for each H I V protease 
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Scheme II. The substructuring schemes for H I V protease and A74704. Each 
block for h i and h2 represents a body and the residues contained within. For 
example, in the h i the first body contains residues 1-3 (up to \j/of residue 3). 
Only one of the two H I V protease polypeptide chains is shown, but both are 
substructured identically. The substructuring of A74704 is shown (the dashed 
lines delineate the bodies). 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
00

6

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



96 

hi substructuring 

"v—\nnni—\ru si—w—vrv "WTT" 
P Q I T L W Q R P L V T I K I G G Q L K E A L L D T G A D D T V 

* A AJUUV rt-JV n n n * A A A A A M R 
1 10 20 30 

>L E E M N L P G R W K P K I V U G G^G G F I K V R Q Y D Q I L , 

40 50 60 

-\nnnr-v—w—\m—w—w \nrv—w—nnnn \t—\t \ 
> l E ^ C G H K A I G T V L V G P T P V N I I G R N L L T 

70 80 90 

h2 substructuring 
t \t \nni—n \r _ . 
P Q I T L W Q R P L V T I K I G G Q L K E A L L D T G A D D T V 

V /\ f\JU\ A /\ JI n i i n R A J Bin • ••••IT 
1 10 20 30 

Flaps _ 
"v \t v MYvy-wmt \J v \f— 

• L E E M N L P G R W K P K M I G G I G G F I K V R Q Y D Q I L -A i t A A n • n ii n i n R a n J\ n. 
40 50 60 

M \TYTirWYYTTY V \TYYinTYVmV V V V ^ 
•-•I E I C G H KAI G T V L V G P T P V N I I G R N L L T Q I G C T L N F 

u / i n i n n n i M i n R A AJUUUUUUUUIA-
70 80 90 

A74704 
substructuring 

Scheme IE. A close up view of the body definitions (dashed lines) for (a) residues 
46-53 ( -MIGGIGGF-) used in h i and h2, and (b) residues 28-31 ( -ADDT-) used 
in h2. Glycines can present special problems when it is desirable to have small 
bodies associated with them: that is, while the substructuring shown in (b)— 
Coc plus side-chain atoms as one body; adjacent peptide planes as other bodies— 
can result in more motion for Gly , it would unfortunately leave the Coc as a single 
body, which would severely limited the time step and negate much of the 
advantage of M B O ( N ) D . The substructuring of G l y shown in (a) represents a 
compromise between speed and accuracy. 
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polypeptide chain (for a total of 124). The smallest body size was for a single residue 
body containing Gly , which had 5 atoms in the extended atom representation. There 
were many bodies that contained two residues, and the largest body contained four 
residues. 

W e wanted to see i f allowing movement in the side chains of residues 
proximate to the ligand would affect the dynamics of extraction—an analysis of the 
side-chain motion of the residues suggested significant movement in this region (not 
shown). We therefore inserted bodies into h i that were defined by hinges about the <|> 
and \|/ angles of a given residue to the residues that were within 3.5 A of the ligand 
(the number of atoms in the previous bodies were adjusted accordingly). This 
substructuring resulted in bodies that contained the Coc and side chain atoms, with the 
adjacent peptide planes as separate bodies. We w i l l refer to this substructuring 
strategy as "h2" (Scheme II and nib); it is slightly different than h i in that it has 
additional bodies in the four regions 25-30, 45-50, 65-75, and 80-85 for a total of 138 
bodies. The inhibitor was divided into seven bodies, with hinges at the % i angles of the 
side chains (Scheme II). 

M B O ( N ) D Simulat ion. Extensive details of the M B O ( N ) D methodology can 
be found elsewhere,(24) and only a concise overview of the equations of motion are 
described here. The equations of motion in M B O ( N ) D use a body-based description 
of the system. In this description, the force vector, G, of each body in the system is 
described in equation 1. 

G = Gff +QMU+^UM,jU-MU (1) 

where the first term, Gff, accounts for chemical interactions embedded in the force field 
( C H A R M M ) ; Q contains three skew-symmetric matrices of linear and angular 
velocities, and accounts for gyroscopic and coriolis effects; U contains the same linear 
and angular velocities as in Q. but in vector form; M is the generalized inertia matrix. 
The last two terms in eq. 1 account for the change in the body's inertia matrix due to 
deformation of the body. The subscript, j, represents the derivative with respect to the 
jth modal coordinate—that is, i f the bodies are flexible; i f they are rigid then the last 
two terms in eq. 1 are not used. The force field evaluations are first calculated in the 
atomistic model, and the resulting force vector is processed to obtain the generalized 
forces in terms of body torques, linear forces, and deformational forces for M B O ( N ) D : 

'ifj 

( 2 ) 

, > J 

where the summation over j includes all atoms within the body being considered; r ; is 
the vector from the body reference origin to atom j; fi is the total force applied to atom 
j and $ represents the / * partition of the body-based mode vectors for the flexible 
body. 
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Results and Discussion 

Comparison and validation of the dynamics of ligand extraction between M B O ( N ) D 
and atomistic methods are the two main goals of this study. Nine different pulling 
rates where studied; the longest simulation (slowest pull) was -1.4 ns. The key 
properties analyzed were the extraction forces for the ligand, the angle between the 
flaps, and the distances between the ligand and the protein during the extraction. Each 
result is discussed in turn. 

Extraction Forces. There is good agreement between the extraction forces from 
M B O ( N ) D and atomistic simulations in the slow pulling region (the area of most 
interest) as shown in Figure 3. Here, h i converges to a constant extraction force faster 
than h2; the faster convergence is because h i has fewer degrees of freedom (DOF) 
than h2. M B O ( N ) D resulted in a factor of 8 increase in speed over atomistic runs. 
The range of values for the extraction forces in Figure 3 underscores the need for 
carrying out multiple simulations with different rates of pulling. Only when the 
extraction forces have converged within a reasonable range can the contribution to the 
dynamics from inertial effects be understood. 

The orientation of the pulling vector used in this study resulted in an 
asymmetric movement of the flaps in H I V (Figure 4). The flaps have a certain 
"handedness" to them, which is reflected in its movement during extraction. During 
the applied force simulation, the ligand interacts most predominantly with one of these 
flaps resulting in the asymmetric movement. 

Range of Motion of the Angle Between the Flaps. We used a definition by 
Collins et al. for the flap angles in H I V protease.(6) The flap angle is defined between 
two vectors, and each vector is defined between the Ccc's of residues 40 and 50 in the 
flaps of each monomer. The comparisons between the atomistic and M B O ( N ) D 
simulations were variable over the different applied pulling forces (Figure 5). The 
results for the slower, more dynamically meaningful runs, suggest that the values of 
the inter-flap angles of h i follow more closely the values from atomistic than h2; but 
h2 results in a greater range (maximum value - minimum value) than h i . The h2 
scheme has more D O F than h i , which results in greater range of motion for the flaps. 
These data suggest that the additional movement allowed by the smaller bodies in the 
active site (h2) may not contribute significantly to the motion of the flaps and to the 
extraction forces. While h i results in less range of motion than h2, it is apparently 
enough motion to allow stable extraction forces (Figures 3, and 4). 

Close Residues Along the Unbinding Pathway. We investigated those 
residues in the H I V protease that were closest to the ligand during the extraction. In 
other words, by computing the distances of residues that were within 3.5 A of the 
ligand during the pulling simulations, we are able to get a rough spatial description of 
the unbinding pathway. Figure 6 shows a representative probability distribution 
function (pdf) of these distances (taken from the slowest run 1.4 ns; applied force 
increment of 6.95 pN), and demonstrates the overall consistency of the unbinding 
pathways between M B O ( N ) D and atomistic simulations. Residues 7-9, and 24-31 line 
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the active site, but are not in the flaps; residues 48-50 (Gly-Gly-He) are associated with 
the tips of the flaps (Figures 1 and 6). There is some discrepancy, however, between 
the relative heights of the pdfs for these residues in each of the flaps from the 
M B O ( N ) D and atomistic simulations. While M B O ( N ) D correctly identifies the range 
of residues at the tips that interact with A74704, the pdf from M B O ( N ) D is higher for 
flap A at residue 48 than for flap B because at this level of substructuring we expect to 
lose some of the details in the dynamics. Not all of the discrepancies w i l l be due to the 
nature of M B O ( N ) D since there is an inherent amount of randomness between 
different simulation conditions that can contribute to the discrepancies (for example, 
Figure 5). 

The fact that M B O ( N ) D seems to compare well to atomistic simulations in 
many, but not all, properties underscores the trade off between accuracy and speed. 
Said differently, an even finer substructuring—smaller bodies—at these tips may 
reproduce the correct relative heights of the pdfs, but would probably result in less 
computational speed due to the need for smaller time steps with smaller bodies. 

The contacts observed between the ligand and the tips of the flaps, 
nevertheless, are particularly interesting because these residues are proximate to 
locations where mutations have been suggested to restrict the motion of these tips 
(which presumably restricts access to the active site) and therefore impart resistance to 
inhibitors.(6) M B O ( N ) D with A F S could be used to see i f the mutated form of the 
protease would result in higher extraction forces with A74704—harder to pull out— 
than the wild-type form as was concluded in a similar study by Collins et al.(6) 

Conclusions 

We have reported preliminary results of an extensive set of nanosecond simulations 
involving pulling the A74704 ligand from the active site of H I V - 1 . M B O ( N ) D results 
in an 8-fold improvement in speed over atomistic methods with good agreement in 
accuracy using several metrics: the extraction forces converged to similar values; the 
ranges of motion for the flaps are similar; the general binding pathways are consistent. 
The h i substructuring seems to provide reasonable results when compared to the 
atomistic results; the results from the h2 substructuring suggest that the additional 
motion of the side chains in the active site do not significantly affect the over all 
behavior of unbinding. Our simulations suggest, therefore, that the key motions for 
the binding of A74704 occur in the flaps and not in the active site. More specifically, 
the results from both atomistic and M B O ( N ) D simulations suggest that the tips of the 
flaps (residues 45-53) may play an important role during the binding and unbinding of 
a ligand to H I V - 1 . The tradeoff between M B O ( N ) D and atomistic methods is that 
most of the finer details of motion are sacrificed for speed with retention of the global 
motions. 

One area of ongoing research is the use of more realistic solvent models with 
M B O ( N ) D . To this end, there are two main strategies that are being explored by us, 
and each is discussed in turn. 

Explicit solvent. We have carried out M B O ( N ) D simulations on other protein-
ligand systems here at Moldyn where explicit molecules of water were used to f i l l the 
cavity of the active site, and to coat the surface of the protein. Each water in this 
system was treated as a single rigid body, and their inclusion in the M B O ( N ) D 
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simulation did not limit the use of a high time step (unpublished). Our motive for 
using this strategy was based on the work by Steinbach and Brooks, where the authors 
showed that a thin shell of water was sufficient to reproduce the motional behavior of 
myoglobin in bulk solvent.(34) Our experience with this strategy is that these 
molecules of water are relatively immobile with respect to bulk waters due to 
interactions with the protein; it is this reduced mobility that permits the high time step 
despite the small size of these bodies. The substructuring of these waters—grouping 
of two of more molecules of water into bodies, which could be made flexible with 
modes—is a related strategy that we are exploring extensively. Substructured waters 
may permit even higher time steps. The use of single rigid waters that are far from the 
protein does indeed severely limit the time step, and would not afford any speed 
advantages with M B O ( N ) D . 

Reduced variable solvent approaches. There are several methods that can be 
used to model solvent in a more meaningful way than the simple (and crude) distance-
dependent dielectric method. For example, continuum electrostatic methods, which 
include the spatial electrostatic potential of the system;(35,36) solvent potential 
methods, which are based on the exposed solvent accessible surface area and empirical 
parameterization;(37,38) Langevin dynamics, which represents the viscous effects of 
solvent through the appropriate frictional dissipation and fluctuation terms.(39,40) 
These methods are consistent with the reduced variable approach of M B O ( N ) D , and 
we are currently exploring their use. 

Applied force simulations on problems in rational drug design are attractive for 
two reasons. First, they may be compared to appropriate A F M experiments. Second, 
they provide new structural and dynamical information not seen in typical equilibrium 
simulation strategies. That is, applied force simulations provide information about 
events at and away from the primary binding site, and about the strength of the 
interaction along this pathway. Current equilibrium simulation methods and 
computational resources cannot be expected to explore events in protein-ligand 
complexes that have energetic barriers above a few kcal/mol. Transition state theory 
helps qualitatively to define the time scales associated with various barrier heights: for 
example, transition barriers that are 5, 10, or 15 kcal/mol w i l l require approximately 
nanoseconds, microseconds, and milliseconds respectively in time to traverse.(41) 
Non-equilibrium methods, therefore, are one way to study long time scale events in 
protein-ligand complexes. 

Determining the contribution of inertial effects to the dynamics of a single A F S 
that result from extracting the ligand faster than the system can relax energetically and 
structurally can be difficult. We have shown, however, that there exists a region 
below which inertial effects seem to be negligible, but this requires multiple 
simulations at different rates of applied force. Strategies to estimate the amount of 
inertial effects during a given simulation, and therefore aid in reducing the number of 
simulations on a particular protein-ligand complex are being explored by us. 

One possible use of A F S in rational drug design is to identify alternative 
binding sites away from the primary binding site, and then use this information to 
connect these sites through a suitable linker.(42) A n important advantage of A F S over 
other similar but static methods that involve minimization, we believe, is that it 
includes contributions from conformational entropy: the compensatory effects 
between enthalpy and entropy is one of the most challenging problems facing the use 
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of computations in rational drug design.(43) The usefulness of A F S methods, 
however, is related not only to the rate of the applied force, but to the orientation of the 
pulling vector. While a single or multiple pulling vectors can be easily used when 
there is sufficient knowledge of the system, a very large number of pulling vectors may 
be needed for systems where the knowledge of plausible pathways is vague or non
existent. Incomplete sampling of all possible pathways is a weakness of similar search 
methods. A large number of A F S simulations can be computationally expensive, and 
therefore M B O ( N ) D stands to contribute significantly to this problem. Another 
important limitation in A F S method for rational drug design is that it does not give 
free energies. Data from A F S methods, nevertheless, are related to koff (K<j = koff / kon), 
and this information would be useful for a series of compounds with similar values of 
kon 

M B O ( N ) D permits larger time steps than atomistic methods; the increased 
speed w i l l be important in the study of very long time scale events (> tens of 
nanoseconds). One criteria for M B O ( N ) D to reproduce the atomistic behavior of a 
system is that high frequency events such as van der Waals clashes are not strongly 
coupled to the dominant low frequency motions. In fact, systems that exhibit large 
motions about hinges—for example, D N A bending and stretching,(22) and hinge 
bending domains in proteins(44)—are good candidates for MBO(N)D.(24) 
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Chapter 7 

Calculation of Relative Hydration Free Energy 
Differences for Heteroaromatic Compounds: Use in 

the Design of AMP Deaminase Inhibitors 

Mark D. Erion and M. Rami Reddy 

Metabasis Therapeutics Inc., 9360 Towne Centre Drive, San Diego, CA 92121 

A strategy for designing potent AMP deaminase inhibitors is 
described which entails the identification of compounds that undergo 
covalent hydration in aqueous solution to generate hydrated analogs 
exhibiting close structural resemblance to the transition state structure. 
Using a combination of quantum mechanical calculations and the free 
energy perturbation methodology, relative hydration free energy 
differences (∆∆Ghyd) were calculated for a variety of pteridine, purine, 
quinazoline and pyrimidine analogs. Calculated results were in good 
agreement with experimental data. Differences in the extent o f 
hydration were attributed to electronic and steric effects and to 
differences in aromaticity based on calculated bond separation 
energies. The potential value of hydration free energy calculations to 
drug design was demonstrated by showing that the sum of ∆∆Ghyd and 
the relative binding free energy (∆Gbind) of the hydrated molecule 
complexed to adenosine deaminase ( A D A ) accurately accounted for 
the 400-fold difference in inhibitory potency of two ADA inhibitors. 

Adenosine is a naturally occurring nucleoside that elicits a vast array o f 
pharmacological effects used to preserve cellular and organ function during times 
o f ischemia (7, 2). Adenosine is produced by cells in response to oxygen 
deprivation through net breakdown of intracellular stores o f A T P . Transport o f 
adenosine out o f the cell leads to activation o f adenosine receptors located on 
adjacent cells. Since adenosine undergoes rapid metabolism, only receptors on 
cells near the site o f adenosine production are activated and therefore only the 
pharmacology associated with adenosine receptor activation in that tissue is 
observed. For example, adenosine produced in the heart is associated with effects 
on blood flow, heart rate and myocardial protection from ischemic damage, 
whereas adenosine in the C N S is associated with neuroprotection, antiseizure 

© 1999 American Chemical Society 107 
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activity and analgesia. Each activity is usually a result o f activation of one or more 
o f the four adenosine receptor subtypes, namely A l , A2a , A 2 b and A 3 . 

Not surprisingly, the profound pharmacological activity associated with 
adenosine receptor activation has attracted enormous interest wi th in the 
pharmaceutical industry over the past two decades. Through these efforts, receptor 
subtype specific agonists have been discovered and shown to exhibit good activity 
i n animal models o f cardiovascular, C N S , inflammatory and metabolic diseases. 
Unfortunately, no adenosine receptor agonist has been successfully developed due, 
i n nearly every case, to an unacceptable therapeutic window resulting from 
simultaneous activation of receptors at sites unrelated to the disease. 

A n alternative strategy that was envisioned to have greater potential for 
producing compounds with a wider therapeutic window has been under intense 
study at Metabasis Therapeutics. The strategy takes advantage o f the site- and 
event-specific nature o f adenosine production (oxygen-limited cells) by using 
compounds, known as Adenosine Regulating Agents ( A R A s ) , that further enhance 
the levels o f extracellular adenosine at these sites through modulation o f enzyme 
activities and biochemical pathways involved in adenosine metabolism and 
production (Figure 1) (3-5). 

A d o 

A T P A D P A M P Ino • H y p - - - - - - Ur ic A c i d 

I M P 

Figure 1: Purine Catabolic Pathway 

One target that is especially noteworthy based on its role in the purine 
salvage and catabolic pathways is A M P deaminase ( A M P D A ) (6). A M P D A 
catalyzes the deamination of A M P to I M P (Figure 2) and consequently can 

Figure 2: A M P Deaminase-Catalyzed Reaction 
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indirectly control adenosine production by diverting the A T P breakdown product, 
A M P , away from adenosine. Inhibition o f A M P D A is anticipated to result in 
elevated extracellular adenosine levels only at sites undergoing ischemia, since flux 
through A M P D A is nearly undetectable under normal conditions due to the low 
basal A M P concentrations (« 1 p M ) coupled with the high A M P D A KM (» 1 m M ) . 
In contrast, flux through A M P D A increases dramatically during ischemia since net 
A T P breakdown produces A M P levels that rapidly approach the KM of A M P D A . 

Inhibitors o f A M P D A , l ike a l l A M P - b i n d i n g proteins, represent a 
considerable design challenge. First, A M P sites are typically very hydrophilic with 
a multitude of positively-charged amino acid residues in direct contact with the 
phosphate portion of the molecule. These electrostatic interactions comprise a large 
proportion o f the A M P binding affinity as readily observed by the typical 10 6 -fold 
loss in binding affinity that characterizes non-phosphorylated analogs. Herein lies 
the dilemma for the medicinal chemist, since retention of charge on the ligand in 
order to maintain binding affinity prevents passive diffusion o f the inhibitor into 
cells and inhibition of intracellular enzymes such as A M P D A . A n additional 
challenge in the design of A M P D A inhibitors stems from the large number o f A M P 
binding proteins and therefore the necessity for the design of highly specific ligands 
to reduce the risk of producing additional drug toxicities. 

Design of A M P D A Inhibitors 

Transition state (TS) mimics often represent the most potent and specific enzyme 
inhibitors (7). H igh affinity is achieved because these inhibitors engage in the full 
complement of enzyme interactions that are made between the enzyme and the 
substrate in the TS . Many of these interactions are either absent or less favorable in 
the ground state structure, which of course is the characteristic required for efficient 
catalysis, i.e. net stabilization of the TS structure and a lowering o f the energetic 
barrier to reaction. High specificity is also achieved through TS mimicry because 
usually only one enzyme can both catalyze a specific reaction and recognize a 
unique set of small molecule substrates. Both properties were particularly attractive 
for our purposes especially since a large enhancement o f binding affinity could 
enable the discovery o f A M P D A inhibitors that retain sufficient binding affinity in 
the absence of substantial molecular charge and therefore are able to enter cells and 
inhibit A M P D A . 

The TS structure that is recognized and stabilized by A M P D A is not known 
(8) but is expected to be similar to the TS structure for the related enzyme, 
adenosine deaminase ( A D A ) , on the basis o f the reaction (deamination o f adenine) 
and their high sequence homology in the purine binding site. The TS of A D A is 
postulated from the high resolution X-ray structure of A D A complexed with 6-
hydroxy-l,6-dihydropurine riboside (9). Accordingly, deamination is postulated to 
occur by an initial rate-limiting zinc-assisted hydration o f the 1,6 double bond o f 
adenine to produce the tetrahedral intermediate hydrate 1. Irreversible breakdown 
of the intermediate produces the 6-oxo purine product and ammonia. 

Three compounds are thought to inhibit A D A by TS mimicry (Figure 3). In 
each case, a single hydroxyl, located in a position analogous to the hydroxyl on the 
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hydrated intermediate, is known to be absolutely essential for inhibitory activity. 
Coformycin (3), a microbial metabolite, and its 5'-monophosphate reversibly 
inhibit A D A and A M P D A (Kj « 10" 1 0 M ) , respectively, with binding affinities that 
represent some o f the most potent ever discovered for a small molecule inhibitor 
(70). Despite the absence o f the 5'-phosphate, coformycin also is a modest 
inhibitor of A M P D A (Kj « 10" 6 M ) . The fact that it is an extremely potent inhibitor 
o f A D A , however, limits its use for some chronic indications, since potent 
inhibition of A D A produces severe immunosuppression. Recently, we reported a 
series o f N3-substituted coformycin aglycone analogs that are 1000-fold more 
potent A M P D A inhibitors ( K i « 1 n M ) than coformycin (77-75) and are highly 
selective for A M P D A relative to A D A (Kj » 1 0 - 5 M ) . These compounds are 
currently undergoing pharmacological evaluation in a variety of animal models o f 
disease to explore the potential of A M P D A as an adenosine regulating agent target. 

H O O H H O O H H O O H 

2 3 4 

Figure 3: A D A and A M P D A TS Inhibitors 

The TS mimic with the highest reported affinity for A D A is the 1,6-hydrate 
o f purine riboside, i.e. 4, which is not particularly surprising given its close 
structural resemblance to the A D A TS structure (14). The molecular basis for the 
high affinity is apparent from the X-ray structure of the A D A complex, which 
shows multiple interactions between the active-site residues and the zinc with the 6-
hydroxyl group (9). Unlike coformycin-based TS mimics, no previous efforts have 
been reported designed to exploit the high affinity o f 4. The most l ikely reason 
stems from the instability of 4, which exists nearly exclusively as purine riboside in 
solution as evident from the highly unfavorable equilibrium constant ( K e q = 10 - 7 ) 
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that characterizes the hydration reaction (Figure 4). Purine riboside exhibits an 
apparent inhibition constant o f A D A of approximately 10"5 M . Since the species 
responsible for inhibition of A D A is the hydrated molecule, and since the apparent 
equil ibrium constant is related to the hydration equilibrium constant and the 
inhibitory constant for the hydrated molecule (Ki*) by Kj (app) = Kj*( l + 1/Keq) ~ 
Ki*Keq _ 1, K i * has been calculated to be a remarkable 10"12 M (75). 

Figure 4: Hydration o f Purine Riboside (5) 

Our strategy for the design of potent, cell-penetrable A M P D A inhibitors 
was to modify the purine base in a manner that enhanced hydration without 
impairing the binding of the hydrated species to the A M P binding site (Figure 5). 
To test this strategy we analyzed potential modifications of purine riboside for their 
ability to enhance hydration. Modifications that enhanced hydration from 10"7 to 
10"4 without diminishing Ki* would enhance the apparent inhibition by greater than 
1000-fold, i.e. from 1 | i M to 1 n M . Modifications identified in this work were 
anticipated to be transferable to our discovery efforts on A M P D A inhibitors based 
on the high homology between A M P D A and A D A in the purine binding site. 

HO-

N H 

O H 

HO-

N H 

5 Analog 

= lO" 7 lO" 4 

= l O " 1 3 M 10 - 1 3 M 

= 1 0 " 6 M 1 0 " 9 M 

Figure 5: Drug Design Strategy 
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Computer-Aided Drug Design 

Design o f potent deaminase inhibitors depends on our ability to accurately predict 
the effect of the modifications on both the hydration equilibrium and the affinity o f 
the hydrated molecule for the deaminase binding site. Accordingly, accurate 
calculations o f both were considered essential for prediction o f the overall 
inhibitory potential of various purine riboside analogs. Analysis o f the hydrate 
binding affinity was envisioned to entail calculation of relative binding affinities 
using the well-described free energy perturbation method and a computer model 
derived from the X-ray coordinates o f the ADA:6-hydroxy- l ,6-dihydropur ine 
riboside complex. Accurate calculation o f the hydration equilibrium constant 
required calculation o f the free energy difference for the hydration reaction which is 
related to the differences in free energy between the hydrated product and the 
reactants in the gas phase and in solvent (eq 1). 

Hydration Free Energy Calculations. The gas phase free energies ( A G g a s ) were 
calculated using energies obtained from ab initio quantum mechanical calculations 
at the 6-31G** basis set level on fully-geometry optimized anhydrous and hydrated 
compounds. A s detailed in an earlier publication (16% efforts were made to 
enhance the accuracy of these calculations by including zero point and vibrational 
energies as wel l as by including electron correlation energy contributions using 
second, third and fourth order Moller-Plesset perturbation theory and QCISD(T) 
correlation methods at the 6-31G** basis set level. 

The solvation free energy differences were calculated using molecular 
dynamics ( M D ) simulations in conjunction wi th the thermodynamic cycle 
perturbation ( T C P ) approach (7 7). The T C P cycle therefore entailed a 
computational transformation o f the unhydrated molecule (R) to the hydrated 
molecule (P) in the gas phase and in the presence of S P C / E waters (16) (Figure 6). 

AGhyd = -RTlnKeq = AGgas + A A G s o i a) 

R(gas) 
A G R 

* - R ( a q ) 

A G , gas A G . 'aq 

A G P 

P(gas) P(aq) 

A A G s o l = A G a q - A G . gas 

Figure 6: T C P Cycle for Calculation of AAGsoi 
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To test the accuracy o f the approach, a small set o f carbonyl-containing 
compounds with experimentally-determined hydration equilibrium constants were 
evaluated. Results showed that although the correct trends were observed, 
significant differences were observed between the calculated and experimental 
results. Inaccuracies in the hydration free energy difference were attributed to 
inaccuracies in both A G g a s and AAGsoi- Gas phase quantum mechanical free 
energies varied significantly depending on the level o f theory. Errors in the 
solvation free energy differences were attributed to the difference in hybridization 
between the reactant (sp1) and product molecules (sp3) and the slow convergence of 
the calculations as a result of this large structural perturbation. 

To improve the accuracy of the results, the relative hydration free energy 
difference for two similar hydration reactions was calculated in order to minimize 
systematic errors. Relative hydration free energies were considered suitable for our 
purposes, since the primary aim was to determine whether a structural modification 
produced a compound with enhanced or diminished hydration. Several significant 
advantages are associated with calculation o f relative hydration free energies 
compared to absolute free energies. First, the free energy contribution of the water 
molecule completely cancels since it is common to both reactions. Second, the 
solvation free energy calculation entails the difference o f two thermodynamic 
cycles, one for the reactants and one for the products. Consequently, the 
calculation converges more rapidly because the structural perturbation is markedly 
less pronounced. Last, accurate results are possible at lower levels o f quantum 
mechanical theory. The major disadvantage of the approach, however, is that it 
requires evaluation of two hydration reactions that bear relatively close structural 
resemblance. 

Calculat ion o f relative hydration free energies for a set o f carbonyl 
compounds gave results similar to experimental findings (18). Good agreement 
was obtained regardless of the molecular factor influencing the extent o f hydration. 
Factors included differences in sterics and electronics near the carbonyl as wel l as 
differences in angle strain, which is the factor that l ikely accounts for the high 
propensity of cyclopropanone to hydrate in aqueous solutions. 

Table I: Relative Hydration of Carbonyi-Containing Compounds (1-2) 
R l R2 A A G h y d (calc)a A A G h y d (expt) 

(kcal/mol) (kcal/mol) 
H C H O CH3CHO -4.7 -4.3 
C H 3 C H O CH3COCH3 -4.2 -4.0 
C H 3 C 0 C H 2 C 1 CH3COCH3 -3.1 -3.4 
CH3COCOOH CH3COCH3 -3.7 -4.0 
CH3COCF3 CH3COCH3 -8.2 -C H 3 C O C H 3 -14 

a Standard errors ranged from ± 0.4 - 0.5 kcal/mol 
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Hydration of Heteroaromatic Compounds 

Heteroaromatic compounds represent another class o f organic compounds known to 
undergo covalent hydration (19-20). Hydrat ion equi l ibr ia for numerous 
azanaphthalenes were experimentally determined in the 1960s and 1970s using a 
variety o f spectroscopic techniques. A subset of these compounds with equilibrium 
constants ranging from 10" 7 to greater than 10 3 were chosen to assess the accuracy 
o f our method for calculating relative hydration free energies (21). In one study, 
pteridine, which hydrates approximately 20% in aqueous solutions, was compared 
to several analogs in which the only difference was the absence or the presence o f 
nitrogens in the aromatic ring fused to the pyrimidine ring. Although the structural 
differences were relatively small and distant from the hydration site, the difference 
in the extent o f hydration was large. A s shown in Table II, the calculated and 
experimental results were very similar. Accurate results were also obtained for a 
triazanaphthalene compound that fails to hydrate in the neutral form but exists 
almost exclusively in the hydrated form as the cationic species. 
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G o o d agreement was also achieved for azanaphthalene compounds 
containing a substituent that shifts the hydration equilibrium. For example, a study 
o f 4-methylpteridine (6) and 4-trifluoromethyl pteridine (7) showed that 
substituents can, in some instances, not only change the extent o f hydration but also 
the preferred site o f hydration (22) (Figure 7). Experimental results indicate that 
the 4-trifluoromethyl analog hydrates initially across the 5,6- and 7,8-double bonds 
to form the dihydrate. Over time the dihydrate is converted to the 3,4-double bond 
hydrate. The anhydrous form is not detected. In contrast, the 4-methyl analog is 
poorly hydrated and the only hydrated species detected in solution is the dihydrate 
and not the 3,4-double bond monohydrate. The molecular factors attributed to the 
difference is reported to be a mixture of the methyl group sterically destabilizing 
the 3,4-hydrate and the trifluoromethyl group stabilizing the hydrate through 
inductive effects. The calculated results are consistent with these findings showing 
a 9.1 kcal/mol difference between the methyl and trifluoromethyl analogs for 
hydration across the 3,4-double bond and a 5.9 and -1.9 kcal /mol difference 
between the 3,4-double bond hydrate and the 7,8-double bond hydrate for the 
methyl and trifluoromethyl substituted compounds, respectively. Thus, the method 
can be used to accurately predict the site o f hydration as wel l as the extent o f 
hydration. 

H 

Figure 7: Calculated Relative Hydration Free Energies of 4-Substituted Pteridines 

Differences in Purine and Pteridine Hydration. In contrast to pteridine, 9-
methylpurine exists in the hydrated form to an extremely l imited extent. 
Experimental estimations of the hydration equilibrium constant for purine riboside 
suggest that it is about 10~7 or nearly 7 orders o f magnitude less favorable than Keq 
for pteridine. This finding is remarkable considering that both compounds hydrate 
across the 1,6-double bond o f the pyrimidine ring and both contain an 
heteroaromatic ring fused at the 4- and 5-positions o f the pyrimidine ring by 
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aromatic nitrogen atoms. The only difference is the position of one carbon atom, 
which is found in the aromatic ring in pteridine and attached to N 9 of purine. Since 
this difference is unlikely to result in large differences in steric or inductive effects 
at the 1,6-double bond, we speculated that the differences in hydration could be due 
to differences in resonance energy lost upon hydration o f the pyrimidine ring. 
Clearly, hydration of an heteroaromatic ring results in a loss o f aromaticity in the 
hydrated product. Heteroaromatic groups that are less aromatic w i l l thereby suffer 
less loss in resonance energy and therefore be more likely to hydrate. 

Calculation o f bond separation energies at the 6-31G** basis set level for 
the hydrated and anhydrous forms of both 9-methylpurine and pteridine supported 
this hypothesis (Figure 8), since pteridine lost 0.58 kcal/mol resonance energy upon 
hydration, whereas the purine analog lost 9.43 kcal /mol. The difference in 
resonance energy lost between the two heterocycles is therefore approximately 8.9 
kcal /mol or a value very similar to the their relative hydration free energy 
difference. These results suggest that the major factor responsible for the large 
difference in hydration free energy between pteridine and 9-methylpurine is a 
difference in aromaticity. 

H O 

Purine - Pteridine (kcal/mol) 

A A A E (BSE) = -8.9 

A A G h y d ( c a l c ) = 9.3 

A A G h y d ( e x p t ) « 8.8 

Figure 8: Purine vs. Pteridine Hydration 
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Calculation of Relative Inhibitor Potencies. Results from our studies of 
heteroaromatic hydration suggested that analogs of purine riboside (PR) with 
enhanced hydration could be designed by incorporation o f electron withdrawing 
substituents near the hydration site or by replacement of the purine base with a less 
aromatic base. To achieve our goal o f identifying analogs with improved A D A 
inhibitory potency , we calculated, as reported in detail elsewhere (27), the relative 
binding affinity for the hydrated species complexed to the A D A binding site cavity 
in order to determine which modifications enhance hydration and are not 
detrimental to binding affinity (Figure 9). 

H 2 0 A D A 
P R ~ P R - H 2 0 A D A : [ P R - H 2 0 ] 

K e q K > 

H 2 0 A D A 
PR' ^ " PR' - H 2 0 i * A D A : [PR' - H 2 0 ] 

K e q . V 

Figure 9: Relative Inhibitor Potency 

The apparent inhibitory potency ( K i (app)) as measured experimentally is related to 
both the hydration equilibrium constant and the intrinsic binding affinity o f the 
hydrated molecule (Ki*) by eq 2. Accordingly, the relative inhibitory potency 
between two analogs is related to the relative free energy difference by eq 3. 
Computationally, A G r e i is determined simply by summing the relative free energies 
for hydration and hydrate binding affinity as shown in eq 4. 

K i (app) = K j * (1 + 1/Keq) « K ^ K e q " 1 (2) 

A G r e i = -RTln[Ki(app)/Ki»(app)] (3) 

A G r e i = AAGhyd + AAGbind (4) 

To test whether we could accurately calculate the relative inhibitor potency 
for a pair o f A D A inhibitors, we studied purine riboside (5) and 8-azapurine 
riboside (8). Previously, Townsend et al., showed that the 8-aza analog was a 400-
fold more potent A D A inhibitor (25). The molecular reason for this enhancement 
in potency was not determined but could be either due to enhanced hydration or due 
to enhanced A D A binding affinity of the hydrated species. To determine the reason 
we calculated the relative difference in free energies for both hydration and binding. 

The relative binding free energy difference was calculated using a computer 
model o f the murine adenosine deaminase (ADA)-6-hydroxy-l ,6-dihydropurine 
riboside (4) complex generated from the X-ray structure (pdb file name: 2 A D A ) . 
A l l molecular dynamics, molecular mechanics and T C P calculations were carried 
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out wi th the A M B E R program (24) using an a l l atom force field and S P C / E 
potentials (25) to describe water interactions. The aqueous phase and complex 
molecular dynamics simulations were conducted as reported elsewhere (76). The 
free energy difference for binding was calculated using the second cycle (Figure 10) 
and represents the difference of the free energy between purine riboside hydrate and 
its 8-aza analog (9) in the complex and in solvent. The structural perturbation was 
carried out over 51 windows with each window comprising 2.5 ps o f equilibration 
and 5 ps o f data collection. The free energy difference is the average o f four 
calculations, i.e. forward and reverse mutations starting with purine riboside 
hydrate and 8-azapurine riboside hydrate. The results indicated that the 8-aza 
analog loses 3.1 ± 0.7 kcal/mol o f binding energy thereby eliminating this potential 
explanation for the 400-fold improvement in A D A inhibitor potency exhibited by 8-
azapurine riboside. 

The factors that account for the loss in binding affinity o f 8-azapurine 
riboside hydrate were delineated in subsequent studies. Using the first T C P cycle 
(Figure 10), the difference in desolvation free energy was calculated and shown to 
favor purine riboside hydrate by 1.1 ± 0 . 5 kcal/mol. The remaining portion o f the 
lost binding energy, i.e. 2 kcal/mol, associated with the 8-azapurine riboside 
hydrate binding is likely due to a loss in intrinsic binding affinity which may arise 
from an unfavorable electrostatic interaction between the 8-nitrogen and Asp296 as 
observed in the energy minimized, MD-equilibrated A D A complex. 

A G i A G 2 

4 (gas) • 4 (aq) + A D A (aq) - • 4 : A D A (aq) 

A G , gas 

9(gas) 

C Y C L E 1 

A G , 

A G aq 
C Y C L E 2 

A G , 
9 (aq) + A D A (aq) 

A G . . 

9 : A D A (aq) 

Figure 10: T C P Cycles for Relative Solvation and Binding Free Energies 
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The other possible explanation for the 400-fold improvement in inhibitory 
potency exhibited by 8-azapurine riboside (8) is that the 8-aza analog hydrates to a 
much larger extent than purine riboside (5). Calculation o f the relative hydration 
free energy difference between 9-methylpurine and 8-aza-9-methylpurine strongly 
supported this possibility, since the difference was 7.1 kcal/mol or approximately a 
5-order o f magnitude rightward shift in the equilibrium constant for the 8-aza 
analog. Calculation o f bond separation energies for the hydrated and unhydrated 
molecules suggested that the large difference in hydration arises from a large 
relative loss in resonance energy incurred by purine compared to 8-azapurine 
during the hydration reaction. 

The calculated results provide a clear explanation for the difference in 
inhibitory potency between purine riboside and its 8-aza analog (Table III). The 
relative hydration free energy difference indicates that the 8-azapurine analog 
hydrates about 160,000-fold greater than the corresponding purine analog (AAGhyd 
= -7.1 kcal/mol) whereas the 8-aza analog suffers approximately a 200-fold 
decrease in binding affinity (AAGbind = 3.1 kcal/mol). The net effect, however, is a 
4.0 kcal/mol enhancement in inhibitory potency in favor of the 8-aza analog which 
translates to a predicted K\ (app) for 8-azapurine riboside of 2 x 10" 8 M ; a value very 
close to the experimental result of 4 x 10" 8 M (23). 

Table III: Inhibitory Potential of Purine Riboside and its 8-aza Analog 
Purine Riboside (5) 8-5 (calc) 8-Azapurine Riboside (8) 

(kcal/mol) 
Keq = 1.1 X l O " 7 AAGhyd = -7.1 Keq = 1.8 x 10"2 
K i * = 1 . 8 x l O " 1 2 M AAGbind = 3.1 K i * = 3 . 4 x l O " 1 0 M 

Ki(app) = 1 . 6 x l O - 5 M A G r e i =-4.0 K i (app) = 1 . 9 x l O " 8 M 
Kj(app) = 4 . 0 x l O - 8 M ( e x p t ) 

Summary 

Rational drug design using computational methods is useful in prioritizing potential 
target compounds i f the calculated results accurately predict the experimental 
findings. Our study analyzing the difference in A D A inhibitory potency between 
purine riboside and 8-azapurine riboside illustrates the importance of calculating 
both the relative hydration free energy and the relative binding free energy for 
molecules that act as enzyme inhibitors only after undergoing covalent hydration. 
In addition, our studies o f heteroaromatic hydration suggest that various ring 
substituents and ring modifications can significantly enhance purine riboside 
hydration and that this effect could be useful in the design o f potent A D A and 
A M P D A inhibitors. 
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Chapter 8 

New Tools for Rational Drug Design 
Gregory D . Hawkins, 1 Jiabo Li, 1 Tianhai (Tony) Zhu, 1 

Candee C . Chambers, 1,3 David J. Giesen, 1,4 Daniel A. Liotard, 2 

Christopher J . Cramer, 1 and Donald G . Truhlar 1 

1 Department of Chemistry and Supercomputer Institute, University of 
Minnesota, Minneapolis, MN 55455 

2 Laboratoire de Physico-Chimie Theorique, Univers i té de Bordeaux, 351 
Cours de la Liberation, 33405 Talence Cedex, France 

We have developed two new tools for molecular modeling that 
can be very useful for computer-aided drug design, namely 
class IV charges and the SMx series of solvation models. This 
contr ibut ion overviews the current status of our efforts i n 
these areas, including the C M 2 charge model and the SM5 
series of solvation models. The solvation models may be used 
to estimate partition coefficients for phase transfer equilibria 
of organic solutes between water and 1-octanol, the most 
widely used mimic of cellular biophases, and also between 
water and other solvents that have been used for this purpose, 
e.g., hexadecane and chloroform. 

1. Introduction 
T h e p a r t i t i o n i n g o f a n o rgan ic solute b e t w e e n a n aqueous phase {aq) 

a n d a n o n p o l a r m e d i u m (np) is c r i t i c a l for m a n y p h e n o m e n a i n b i o l o g i c a l 
a n d m e d i c i n a l chemi s t ry . I n p a r t i c u l a r th is p a r t i t i o n i n g c a n be c r i t i c a l for 
d r u g d e l i v e r y , b i n d i n g , a n d c l e a r a n c e . P r e d i c t i o n s o f the r e l a t i ve free 
energy o f o r g a n i c m o l e c u l e s i n aqueous a n d n o n p o l a r m e d i a c a n be ve ry 
u se fu l for p r e d i c t i n g the b i o a v a i l a b i l i t y o f p o t e n t i a l d r u g s . L i p i d - l i k e 
n o n p o l a r m e d i a are e s p e c i a l l y i m p o r t a n t b e c a u s e t h e y m i m i c c e l l 
m e m b r a n e s , a n d the l i p o p h i l i c charac te r o f o r g a n i c c o m p o u n d s is one o f 
the m o s t w i d e l y u s e d p red ic to r s o f the i r b ioac t i v i t y . T h e l i p i d s o l u b i l i t y o f 
a m o l e c u l e correla tes w i t h its ab i l i t y to enter the b r a i n (i.e., pass the b l o o d -
b r a i n barr ier) or o ther parts o f the cen t ra l ne rvous s y s t e m a n d is genera l ly 
b e l i e v e d to have a large in f luence o n p h a r m a c o l o g i c a l p roper t i e s . 

3 Current address: Departments of Physics and Chemistry, Mercyhurst College, Erie, PA 16504 
4 Current address: Eastman Kodak Company, Rochester, NY 14650 
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The l ipophil ic character of a molecule is typically measured 
quantitatively by its partitioning between an organic phase and water. 1-
Octanol is the most widely used solvent for mimicking biophases in this 
respect, and Hansch and D u n n 1 have attempted to rationalize the success 
of correlations based on 1-octanol by noting that proteins (with their amide 
groups) and lipid phases (with their ester and phosphate functionalities) 
both present accessible hydrogen-bonding opportunit ies to drug 
molecules, and the O H functional group of octanol can serve as a hydrogen 
bond acceptor or donor to mimic such effects, while the molecule is large 
enough to remain overall hydrophobic. The partitioning coefficient P of 
organic solutes between water and 1-octanol is widely used in property-
activity relationships in rational drug design, and a very large amount of 
work concerned with the measurement and/or prediction of such partition 
coefficients has been reported. The reader is referred to representative 
articles for further references. 1" - 1 5 

Hexadecane is another important example of a nonpolar solvent 
because solute-hexadecane interactions, like solute-1-octanol interactions, 
are recognized as a surrogate for hydrophobic interactions of molecules 
with l ipid bilayers or other cellular m a t e r i a l 1 6 " 2 0 or with the nonpolar 
active site of an enzyme or receptor. In such models, the partition 
coefficient of a solute between an alkane solvent and water provides some 
indication of how likely it is to penetrate the bilayer, skin, brain, central 
nervous system, or other biophase or to bind to the nonpolar site in (or on) 
the protein. The difference between log P for an amphiphilic solvent like 1-
octanol or 1-hexanol and apolar, aprotic inert solvents like straight-chain 
alkanes or cyclohexane is generally interpreted as a measure of the 
hydrogen-bond donor capacity of so lutes . 2 1 - 2 4 Furthermore this difference 
has been used in rational drug design because it correlates with 
brain/blood and cerebrospinal/blood partitioning equi l ibria . 2 5 

Another solvent that has been used for similar purposes as 1-octanol 
and hexadecane is chloroform. Reyno lds 2 6 has discussed the utility of 
water /chloroform partit ion coefficients for correlating membrane 
permeability and bioactivity properties that depend on such permeability. 

The ability to understand the solvation of organic solutes in 
nonpolar media is also important for conformational analysis of bioactive 
compounds. A recent example of the importance of solvent effects on 
conformation is the interpretation of octanol/water and heptane/water 
partition coefficients for the immunosuppressant cyclosporin A in terms of 
solvent-dependent conformational changes and of the relationship of these 
changes to solvent-dependent inhibitory activity. 2 4 

Historically, most attempts to develop predictive models for 
solvation free energies or partit ioning coefficients have involved 
multivariate quantitative structure-property relationships ( Q S P R s ) . 2 7 - 3 3 

More recently, methods for including solvent electrostatic effects self 
consistently in quantum mechanical solute descriptions have advanced 
v i g o r o u s l y , 3 4 - 4 5 and such models are preferred for making predictions on 
molecules outside the QSPR training sets or for transition states. Accurate 
quantitative predictions must include nonelectrostatic effects as well, and 
we have developed successful models for quantum mechanical self-
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consistent electrostatics in both aqueous s o l u t i o n s 4 6 " 5 9 and organic 
solvents 5 5 - 6 5 

A n especially important aspect of the framework of our model is that 
only solute atoms are treated explicitly; the solvent is treated as a 
continuous fluid. There are three kinds of terms in the solvation free 
energy: long-range electrostatic contributions (labeled ENP, to denote that 
they include self-consistent solute electronic and nuclear contributions 
and solute-solvent electric rjolarization effects), intermediate-range cavity-
structural (CS) contributions, and short-range cavity-dispersion (CD) 
effects. Hydrogen bonding affects all three terms, ENP, C D , and CS. 

The functional forms and parameters of the electrostatic model for 
organic solvents are identical to those for water except that the dielectric 
constant, e, of the organic solvent replaces the dielectric constant of water. 
The electrostatic treatment involves a three-dimensional integration over 
the free energy density due to electric polarization of the solvent in the 
regions of space not occupied by the s o l u t e , 3 8 ' 4 2 ' 5 1 ' 6 6 ' 6 7 and therefore it 
reflects the solute shape realistically. The solute electronic wave functions 
and solute internal energies are calculated with semiempirical molecular 
orbital theory , 6 8 ab initio Hartree-Fock theory , 6 9 or density functional 
t h e o r y . 7 0 The competition between solvent polarization and solute 
distortion is accounted for by placing solvation terms inside the effective 
one-electron Hamiltonians for the molecular o r b i t a l s . 4 2 ' 7 1 - 7 3 

The atomic partial charges needed for the electrostatic solvation 
terms may be calculated by conventional Mull iken analysis or by class 
I V 5 0 ' 7 4 ' 7 5 charge models. The latter capability is a particular strength of our 
solvation model since these charges, according to previous va l ida t ion , 7 4 ' 7 5 

yield remarkably accurate electrostatic properties, and in addition they are 
very inexpensive to calculate. Accurate atomic partial charges are of great 
interest for molecular modeling in general and their usefulness extends 
beyond solvation mode l ing . 7 6 Thus we shall review our recent progress in 
this area as a separate topic. 

In addition to electrostatics, our solvation models also include non
electrostatic effects in the first solvation shell. These effects are modeled in 
terms of solvent-accessible surface a r e a s 7 7 ' 7 8 and semiempirical atomic 
surface tensions. 7 9 The solvent dependence of our predicted free energies 
of solvation comes from two sources: (i) The electrostatic term contains the 
factor (1 - e - 1 ) , where e is the dielectric constant of the solvent, (ii) The 
atomic surface tensions are determined separately for water and organic 
solvents, and in the latter case they depend on one or more of the following 
solvent descriptors: n, the index of refraction; a and P, A b r a h a m ' s 8 0 - 8 3 

hydrogen bond acidity and basicity parameters (converting our notation to 
H H 

his, a is £ a 2 and P is £ P 2 ) ; y, the macroscopic surface tension of the solvent; 
and two descriptors which depend upon the fraction of non-hydrogenic 
atoms within the solvent which are aromatic carbon or electronegative 
halogen atoms (we define "electronegative halogen atoms" as F, CI, and Br 
since these are the halogen atoms that are more electronegative than 
c a r b o n 8 4 ) . A major advantage of using these parameters is that they are 
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available for almost all possible solvents. Should one desire to treat an 
unusual solvent for which a and b are not known, three possibilities present 
themselves. First, they could be determined by generating the kind of 
partition coefficient data and fits used originally by A b r a h a m . 8 0 - 8 3 Second, 
they could be determined by correlating them against other acidity or 
basicity sca les 8 5 ' 8 6 that are known for the solvent of interest. Third, Murray 
and Po l i t zer 8 6 have shown that Abraham's single-site hydrogen-bond 

H H 
acidity and basicity parameters (cc2 and P 2 ) correlate well with maxima and 
minima of calculated electrostatic potentials on the molecular surface, and 

H H 
these single-site parameters can be used to estimate £cc2 and £ p 2 in most 
cases. 

Section 2 summarizes the current status of class IV charges. Section 3 
presents a level chart of SM5 models. Section 4 summarizes the 
performance of several SM5 models for free energies of solvation in water, 1-
octanol, hexadecane, and chloroform. 
2. Class IV charges 

Partial atomic charges may be classified as follows: 7 4 

Class I: non-quantum-mechanical charges, for example, the 
empirical charges in a molecular mechanics force field; 

Class II: charges obtained directly from wave functions without 
calculating physical observables, for example, charges obtained by 
M u l l i k e n 8 7 or L o w d i n 8 8 population analysis; 

Class III: charges obtained by fitting to electrostatic potentials or 
multipole moments computed from wave functions, for example, 
C h E l P G 8 9 charges; 

Class IV: charges mapped from class II or class III charges with 
semiempirical parameters designed to make the mapped charges better 
reproduce experimental multipole moments or converged quantum 
mechanical electrostatic potentials or multipole m o m e n t s . 5 0 ' 7 4 ' 7 5 

We have presented two models for class IV charges: Charge Model 
150,74 (CMl) and Charge Model 2 7 5 (CM2). 

In the C M l model, we computed zero-order charges by Mull iken 
analysis and mapped them as nonlinear functions of calculated bond 
orders with 15-19 parameters based on data (experimental dipole moments 
and calculated electrostatic potentials) for compounds containing H , C, N , 
O, F, Si, S, CI, Br, and I. Parameters were determined for A M I 9 1 - 9 3 and 
P M 3 9 4 semiempirical molecular orbital wave functions. We achieved root-
mean-square errors in the dipole moments of 0.27 D for maps based on A M I 
wave functions and 0.20 D for maps based on PM3 wave functions. 7 4 

In the C M 2 model we computed zero-order charges by Lowdin 
analysis and mapped them as quadratic functions of calculated bond orders 
with 20 parameters based on 198 experimental dipole moments for 
compounds containing H , C, N , O, F, Si, P, S, CI, Br, and I. Parameters were 
determined for A M I , for four different basis sets for ab initio Hartree-Fock 
wave functions (MIDI! , 9 5 MIDI!(6D), 6-31G*, 6 9 and 6-31+G* 6 9), and for four 
combinations of basis set (MIDI!, MIDI!(6D), or 6-31G*) with density 
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Table 1. Partial atomic charges and dipole moments for P-propiolactone^ 

H F / M I D I ! BPW91/MIDI ! 

Mulliken Lowdin C M 2 Mulliken Lowdin C M 2 

partial charges: 
0-1 -0.82 -0.46 -0.36 -0.57 -0.33 -0.31 
C-2 1.09 0.58 0.56 0.76 0.41 0.51 
0 (carbonyl on C-2) -0.69 -0.41 -0.44 -0.50 -0.31 -0.41 
C-3 0.09 0.10 0.10 -0.00 0.04 0.02 
H-1,2 on C-3 0.20 0.09 0.07 0.22 0.10 0.10 
C-4 -0.58 -0.25 -0.20 -0.51 -0.26 -0.26 
H-3,4 on C-4 0.25 0.13 0.10 0.19 0.13 0.13 

dipole moment (D) 7.69 4.71 4.31 6.02 3.81 4.21 

fldipole moment from H F / M I D I ! density: 4.18 D ; from BPW91 density: 3.41 D ; from 
experiment: 4.18 D 

f u n c t i o n a l ( B P W 9 1 9 6 > 9 7 o r B 3 L Y P 9 8 - 1 0 0 ) . W e a c h i e v e d r o o t - m e a n - s q u a r e 
e r ro r s i n d i p o l e m o m e n t s i n the r ange 0 .17 -0 .19 D fo r H F / 6 - 3 1 G * , 
B 3 L Y P / M I D I ! , B P W 9 1 / 6 - 3 1 G * , H F / M I D I ! , a n d B P W 9 1 / M I D I ! , 0.20-0.21 D for 
two cases w i t h the MIDI ! (6D) basis , 0.25 D w i t h A M I , a n d 0.41 D w i t h H F / 6 -
31+G*, the lat ter va lue ref lec t ing the d i f f icu l ty o f o b t a i n i n g accura te charges 
f r o m w a v e func t ions w i t h diffuse basis func t ions . O n the average, er rors i n 
the d i p o l e s c o m p u t e d as e x p e c t a t i o n va lues f r o m the f u l l w a v e func t ions 
were abou t 1.8 t imes larger t h a n those c o m p u t e d f r o m the C M 2 c h a r g e s . 7 5 

A s a n e x a m p l e o f the p r e d i c t i o n s o f the C M 2 charge m o d e l , c o n s i d e r 
P -p rop io lac tone . T h e e x p e r i m e n t a l d i p o l e m o m e n t is 4.18 D , a n d the use o f 
B P W 9 1 / M I D I ! wave func t ions y i e ld s 3.41 D , whereas the C M 2 m o d e l ba sed 
o n this same B P W 9 1 / M I D I ! wave f u n c t i o n for P - p r o p i o l a c t o n e y i e ld s 4.21 D . 
T h e p a r t i a l charges o n the o x y g e n a toms differ b y as m u c h as 0.25 w h e n 
o b t a i n e d b y M u l l i k e n a n a l y s i s o f H F / M I D I ! a n d B P W 9 1 / M I D I ! w a v e 
f u n c t i o n s a n d b y as m u c h as 0.13 for L o w d i n ana lys i s . B u t the m a p p e d 
charges f r o m these t w o qu i t e different w a v e f u n c t i o n s agree w i t h i n 0.05. 
F u l l resul ts are g i v e n i n Tab le 1. 

3. Summary of SM5 models 
A q u e o u s / n o n p o l a r p a r t i t i o n i n g is u s u a l l y q u a n t i f i e d b y the p a r t i t i o n 

coeff ic ient P or its, l o g a r i t h m ("log P") , w h e r e 

pJsolute]np ( 1 ) 

[solute]^ 

A n o t h e r (equivalent) d e f i n i t i o n o f P is 
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l o g P = AAG^/ ( -2 .303A7) (2) 

w h e r e 

AAG° = Acfs(np) - AcPs(aq), (3) 

(?s{solv) is the s tandard-sta te free energy o f s o l v a t i o n o f the solu te i n solvent 
solv, R is the gas constant , a n d T is t empera tu re . 

T h e s tandard-s ta te free energy o f s o l v a t i o n i n wa te r is w r i t t e n as 

A G ° = A G E N p + £ GCDS,a (« 
a 

w h e r e a denotes one o f the a toms o f the so lu te a n d 

G C D S , a = ^ a E faW°ai ® 
i 

w h e r e fai is a f u n c t i o n o f the geomet ry R o f the so lu te (ac tua l ly it d e p e n d s 
o n l y o n se lec ted b o n d dis tances , a n d it has n o d e p e n d e n c e o n b o n d angles 
o r d i h e d r a l angles) a n d a a i is a surface t e n s i o n coeff ic ient . T h e s t anda rd -
state free energy o f s o l v a t i o n i n a n o rgan ic so lvent has the same f o r m as for 
w a t e r excep t tha t a a i is n o t a c o n s t a n t b u t r a the r d e p e n d s o n so lven t 

desc r ip to r s . T h e so lven t desc r ip to r s are gene ra l ly n, a , P, a n d y. I n some 
cases (SM5.4 parameter iza t ions ) spec i a l parameters are u s e d for c h l o r o f o r m , 
b e n z e n e , a n d t o l u e n e ; i n o t h e r cases ( S M 5 . 4 2 R , S M 5 . 2 R , a n d S M 5 . 0 R 
p a r a m e t e r i z a t i o n s ) t w o s p e c i a l so lven t d e s c r i p t o r s are a d d e d to the four 
m e n t i o n e d i n the p r e v i o u s sen tence , i n p a r t i c u l a r d e s c r i p t o r s c o m p u t e d 
f r o m the f r a c t i o n o f n o n h y d r o g e n i c s o l v e n t a t o m s tha t are a r o m a t i c 
ca rbons o r e lect ronegat ive ha logens . S o m e a a i va lues are i n d e p e n d e n t o f a 
a n d have fat = 1; these are some t imes c a l l e d the C S te rms . T h e o ther t e rms 
are s o m e t i m e s c a l l e d C D te rms ; h o w e v e r , o n e s h o u l d be c a u t i o u s abou t 
p h y s i c a l i n t e rp re t a t ions o f the i n d i v i d u a l t e rms . 

T h e a c t u a l p a r a m e t e r i z a i t o n is c a r r i e d o u t as f o l l o w s : F i r s t the 
n o n l i n e a r p a r a m e t e r s are f i x e d b a s e d o n a v a r i e t y o f c o n s i d e r a t i o n s , 
i n c l u d i n g t r ends ove r so lu tes a n d so lven ts for s o l v a t i o n free energ ies o f 
neut ra ls a n d i ons . T h e n the surface t e n s i o n coeff icients are fit to a large set 

o f d a t a t a k e n c h i e f l y f r o m the t a b u l a t i o n o f C a b a n i et a l 1 0 1 for A G f o f 
n e u t r a l s i n w a t e r a n d m o s t l y c o m p u t e d f r o m l o g P v a l u e s f r o m the 
M e d C h e m da ta b a s e 1 0 2 for o rgan ic solvents . 

I n the presen t p a p e r w e c o n s i d e r solutes c o n t a i n i n g H , C , N , O, F , S, 
CI, B r , a n d I. (Some, bu t no t a l l , m o d e l s are also p a r a m e t e r i z e d for solutes 
c o n t a i n i n g P , b u t P - c o n t a i n i n g solutes are n o t d i s c u s s e d i n th i s chapter . ) 
A s a n e x a m p l e o f the s ize o f the t r a i n i n g set, w e c o n s i d e r the t r a i n i n g set 
u s e d for solutes w i t h H , C , N , O, F , S, CI, B r , a n d I i n the S M 5 . 2 R m o d e l . T h i s 
t r a i n i n g set has da ta for 43 i ons a n d 248 neut ra l s i n water . It a lso has 1836 
d a t a p o i n t s fo r 227 n e u t r a l s i n 90 o r g a n i c s o l v e n t s . T h e S M 5 . 2 R 
p a r a m e t e r i z a t i o n s have 46 surface t e n s i o n coeff ic ients for o rgan ic solvents 
a n d 25 for water . 
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Table 6. Free Energy of Solvation and Partition Coefficient Results for 1,2 Ethanediol. 

Model A G E N P G C D S A G S l o 8 ^org/water 

theory experiment 

water 
S M 5 . 4 / A M 1 -6.5 -2.3 -8.8 
SM5.4 /PM3 -6.3 -2.9 -9.2 
SM5.2R/MNDO(d) -1.9 -7.0 -8.9 
S M 5 . 2 R / M N D O -1.9 -7.0 -8.9 
S M 5 . 2 R / A M 1 -2.8 -6.4 -9.2 
S M 5 . 2 R / P M 3 -2.2 -7.1 -9.3 
S M 5 . 0 R -8.7 

1-octanol 
S M 5 . 4 / A M 1 -5.9 -1.4 -7.2 -1.1 
SM5.4 /PM3 -5.8 -1.9 -7.7 -1.1 
SM5.2R/MNDO(d) -1.7 -6.3 -8.0 -0.7 
S M 5 . 2 R / M N D O -1.7 -6.3 -8.0 -0.7 
S M 5 . 2 R / A M 1 -2.5 -5.6 -8.2 -0.7 
S M 5 . 2 R / P M 3 -2.0 -6.3 -8.2 -0.8 
S M 5 . 0 R -8.1 -0.4 

hexadecane 
S M 5 . 4 / A M 1 -3.2 0.1 -3.1 -4.2 
SM5.4 /PM3 -3.2 -0.2 -3.4 -4.3 
SM5.2R/MNDO(d) -0.9 -2.6 -3.5 -4.0 
S M 5 . 2 R / M N D O -0.9 -2.6 -3.5 -4.0 
S M 5 . 2 R / A M 1 -1.3 -2.2 -3.5 -4.2 
S M 5 . 2 R / P M 3 -1.1 -2.6 -3.7 -4.1 
S M 5 . 0 R -3.8 -3.6 

chloroform 
S M 5 . 4 / A M 1 -5.0 -0.2 -5.2 -2.6 
SM5.4 /PM3 -5.0 -0.5 -5.5 -2.7 
SM5.2R/MNDO(d) -1.5 -3.7 -5.2 -2.7 
S M 5 . 2 R / M N D O -1.5 -3.7 -5.2 -2.7 
S M 5 . 2 R / A M 1 -2.1 -3.3 -5.4 -2.8 
S M 5 . 2 R / P M 3 -1.7 -3.7 -5.4 -2.9 
S M 5 . 0 R -5.1 -2.6 

Tab le s 2 -5 s h o w the m e a n u n s i g n e d dev ia t ions i n s tandard-s ta te free 
energies o f s o l v a t i o n for v a r i o u s classes o f solutes i n w a t e r a n d the three 
o rgan ic so lvents s i n g l e d out i n the i n t r o d u c t i o n . I n e a c h table w e s h o w the 
a p p l i c a t i o n o f severa l m o d e l s to the same set o f data, n a m e l y o u r latest a n d 
largest t r a i n i n g set, e x c l u d i n g p h o s p h o r u s - c o n t a i n i n g c o m p o u n d s , except 
that i n Tab les 2, 3, a n d 5, the S M 5 . 4 / P M 3 results are b a s e d o n one less da ta 
p o i n t b e c a u s e h y d r a z i n e is e x c l u d e d w h e n P M 3 is u s e d to o p t i m i z e 
g e o m e t r i e s . T a b l e s 2 - 5 s h o w t h a t w e h a v e u n i f o r m l y s m a l l 
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Table 7. Free Energy of Solvation and Partition Coefficient Results for Thioanisole. 

Model A G E N P G C D S A G S l o g ^org/water 

theory experiment 

water 
S M 5 . 4 / A M 1 -3.9 0.7 -3.3 
SM5.4 /PM3 -3.0 -0.3 -3.3 
SM5.2R/MNDO(d) -1.0 -1.7 -2.7 
S M 5 . 2 R / M N D O -1.0 -1.9 -2.9 
S M 5 . 2 R / A M 1 -3.8 0.8 -3.0 
S M 5 . 2 R / P M 3 -2.7 -0.3 -3.0 
S M 5 . 0 R -3.4 

1-octanol 
S M 5 . 4 / A M 1 -3.5 -3.9 -7.4 3.0 
SM5.4 /PM3 -2.7 -4.6 -7.3 2.9 
SM5.2R/MNDO(d) -0.9 -5.2 -6.1 2.5 
S M 5 . 2 R / M N D O -0.9 -5.5 -6.4 2.6 
S M 5 . 2 R / A M 1 -3.4 -3.0 -6.4 2.5 
S M 5 . 2 R / P M 3 -2.4 -4.1 -6.5 2.6 
S M 5 . 0 R -6.4 2.2 

hexadecane 
S M 5 . 4 / A M 1 -1.8 -5.1 -6.9 2.6 
SM5.4 /PM3 -1.4 -5.7 -7.0 2.7 
SM5.2R/MNDO(d) -0.5 -5.6 -6.1 2.5 
S M 5 . 2 R / M N D O -0.5 -5.8 -6.3 2.5 
S M 5 . 2 R / A M 1 -1.8 -4.3 -6.1 2.3 
S M 5 . 2 R / P M 3 -1.2 -5.0 -6.3 2.4 
S M 5 . 0 R -6.3 2.1 

chloroform 
S M 5 . 4 / A M 1 -2.9 -4.8 -7.8 3.3 
SM5.4 /PM3 -2.3 -5.7 -8.0 3.4 
SM5.2R/MNDO(d) -0.8 -6.5 -7.3 3.3 
S M 5 . 2 R / M N D O -0.8 -6.7 -7.4 3.3 
S M 5 . 2 R / A M 1 -2.9 -4.8 -7.7 3.4 
S M 5 . 2 R / P M 3 -2.0 -5.7 -7.7 3.4 
S M 5 . 0 R -7.4 2.9 

m e a n errors . N o t i c e that s o m e solute classes are no t w e l l r ep resen ted i n the 
d a t a sets for s p e c i f i c so lven t s , a n d i n fact s o m e s o l u t e c lasses are n o t 
r ep resen ted at a l l i n s o m e solvents . T h e S M 5 s o l v a t i o n m o d e l s are able to 
treat s u c h cases because a l l the da ta for free energies o f s o l v a t i o n i n o rgan ic 
so lven ts are fit s i m u l t a n e o u s l y , a n d the n u m b e r o f so lven t de sc r i p to r s is 
m u c h sma l l e r t h a n the to ta l n u m b e r (90) o f o rgan ic so lvents . W e be l ieve i n 
this w a y w e have c a p t u r e d a l l the ma jo r p h y s i c a l effects. 

Tab les 6-8 were i n c l u d e d to e x a m i n e a c o u p l e o f i n d i v i d u a l examples , 
n a m e l y , 1 ,2-ethanediol , t h ioan i so l e , a n d p - d i c h l o r o b e n z e n e . These tables 
s h o w t h e p a r t i t i o n i n g o f t h e p r e d i c t e d s o l v a t i o n f ree e n e r g y 
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Table 8. Free Energy of Solvation and Partition Coefficient Results for p-Dichlorobenzene. 

Model A G E N P GCDS A G S l o g ^org/water 

theory experiment 

water 
S M 5 . 4 / A M 1 -2.1 1.1 -1.0 
SM5.4 /PM3 -1.3 0.2 -1.2 
SM5.2R/MNDO(d) -1.0 -0.6 -1.6 
S M 5 . 2 R / M N D O -1.4 -0.3 -1.7 
S M 5 . 2 R / A M 1 -2.5 1.5 -1.0 
S M 5 . 2 R / P M 3 -1.8 0.2 -1.6 
S M 5 . 0 R -1.0 

1-octanol 
S M 5 . 4 / A M 1 -1.9 -3.7 -5.6 3.3 
SM5.4 /PM3 -1.2 -4.5 -5.7 3.3 
SM5.2R/MNDO(d) -0.9 -5.0 -5.9 3.2 
S M 5 . 2 R / M N D O -1.3 -4.8 -6.1 3.2 
S M 5 . 2 R / A M 1 -2.2 -3.2 -5.5 3.3 
S M 5 . 2 R / P M 3 -1.6 -4.2 -5.8 3.1 
S M 5 . 0 R -5.6 3.4 

hexadecane 
S M 5 . 4 / A M 1 -1.0 -4.7 -5.7 3.4 
SM5.4 /PM3 -0.6 -5.1 -5.7 3.3 
SM5.2R/MNDO(d) -0.5 -5.4 -5.9 3.1 
S M 5 . 2 R / M N D O -0.7 -5.2 -5.9 3.1 
S M 5 . 2 R / A M 1 -1.2 -4.3 -5.5 3.3 
S M 5 . 2 R / P M 3 -0.9 -4.9 -5.8 3.1 
SM5.0R -5.8 3.5 

chloroform 
S M 5 . 4 / A M 1 -1.6 -4.3 -5.9 3.6 
SM5.4 /PM3 -1.0 -5.1 -6.1 3.6 
SM5.2R/MNDO(d) -0.8 -6.1 -6.8 3.8 
S M 5 . 2 R / M N D O -1.1 -5.9 -6.9 3.8 
S M 5 . 2 R / A M 1 -1.9 -4.7 -6.6 4.1 
S M 5 . 2 R / P M 3 -1.4 -5.5 -6.9 3.9 
S M 5 . 0 R -6.6 4.2 

b e t w e e n t h e e l e c t r o s t a t i c ( A G E N P ) a n d n o n - e l e c t r o s t a t i c ( G C D S ) 
c o m p o n e n t s as w e l l as the l o g a r i t h m o f the p a r t i t i o n coef f i c ien t b e t w e e n 
se l ec t ed o r g a n i c so lven t s a n d wate r . T h e S M 5 . 4 m o d e l s u t i l i z e class I V 
charges a n d are d e s i g n e d to o p t i m i z e so lu te g e o m e t r y i n the p re sence o f 
the so lvent r e a c t i o n f ie ld . N o t e that the abso lu te va lue o f the A G E N P t e r m is 
genera l ly m u c h larger for the S M 5 . 4 pa rame te r i za t i ons t h a n for the S M 5 . 2 R 
m o d e l s w h i c h i n c o r p o r a t e the less -accura te class II charges . I n genera l , 
class I V charges l e a d to greater charge sepa ra t ion w i t h i n a so lu te m o l e c u l e , 
w h i c h resu l t s i n a l a rger | A G E N P | - O u r m e t h o d o f p a r a m e t e r i z i n g the 
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Table 9. Absolute Value (kcal/mol) of the A G g ^ p and G ( 

Terms in Selected S M x Models 0 

Model ( | A G E N P | ) ( | G C D S | ) 

water 
S M 5 . 4 / A M 1 4.5 1.5 
SM5.4 /PM3 3.7 1.3 
SM5.2R/MNDO(d) 1.7 2.3 
S M 5 . 2 R / M N D O 1.7 2.3 
S M 5 . 2 R / A M 1 3.2 1.9 
S M 5 . 2 R / P M 3 2.4 2.0 
S M 5 . 0 R 0.0 3.7 

1-octanol 
S M 5 . 4 / A M 1 4.0 2.0 
SM5.4 /PM3 3.4 2.5 
SM5.2R/MNDO(d) 1.5 4.2 
S M 5 . 2 R / M N D O 1.5 4.2 
S M 5 . 2 R / A M 1 2.8 2.9 
S M 5 . 2 R / P M 3 2.1 3.6 
S M 5 . 0 R 0.0 5.7 

hexadecane 
S M 5 . 4 / A M 1 2.1 2.4 
SM5.4 /PM3 1.8 2.8 
SM5.2R/MNDO(d) 0.8 3.6 
S M 5 . 2 R / M N D O 0.8 3.6 
S M 5 . 2 R / A M 1 1.5 2.9 
S M 5 . 2 R / P M 3 1.1 3.3 
S M 5 . 0 R 0.0 4.5 

chloroform 
S M 5 . 4 / A M 1 3.4 2.6 
SM5.4 /PM3 2.9 3.1 
SM5.2R/MNDO(d) 1.3 4.4 
S M 5 . 2 R / M N D O 1.3 4.4 
S M 5 . 2 R / A M 1 2.4 3.5 
S M 5 . 2 R / P M 3 1.8 4.0 
S M 5 . 0 R 0.0 5.5 
aReported averages are for 67 organic solutes for which experimental solvation free 
energies are available in water, hexadecane, octanol, and chloroform. (A total of 268 data 
points.) 

r e m a i n i n g non-e lec t ros t a t i c t e r m ( G C D S ) to the e x p e r i m e n t a l s o l v a t i o n free 
ene rg i e s a l l o w s the d i m i n i s h e d e l e c t r o s t a t i c s o b t a i n e d w i t h t he less 
e x p e n s i v e S M 5 . 2 R m o d e l s to be c o m p e n s a t e d for b y the G C D S t e r m , 
r e s u l t i n g i n fa i r ly accura te abso lu t e s o l v a t i o n free energ ies a n d p a r t i t i o n 
coef f ic ien ts . T h i s a p p r o a c h was t a k e n to the l i m i t i n the S M 5 . 0 R m o d e l 
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Table 10. Mean Unsigned Errors in Predicted Solvation Free Energies, Organic/Water 
Partition Coefficients, and Free Energy of Transfer for Selected S M x methods* 

Model M U E M U E M U E 

A G S ° A A G o ° r g / w a t e r l o g ^rg/water 

water 
S M 5 . 4 / A M 1 0.54 
SM5.4 /PM3 0.47 
SM5.2R/MNDO(d) 0.45 
S M 5 . 2 R / M N D O 0.44 
S M 5 . 2 R / A M 1 0.43 
S M 5 . 2 R / P M 3 0.39 
SM5.0R 0.46 

1-octanol 
S M 5 . 4 / A M 1 0.56 0.63 0.46 
SM5.4 /PM3 0.51 0.54 0.40 
SM5.2R/MNDO(d) 0.43 0.38 0.28 
S M 5 . 2 R / M N D O 0.42 0.38 0.28 
S M 5 . 2 R / A M 1 0.47 0.42 0.31 
S M 5 . 2 R / P M 3 0.41 0.37 0.27 
S M 5 . 0 R 0.40 0.40 0.38 

hexadecane 
SM5.4 /AM1 0.29 0.49 0.36 
SM5.4 /PM3 0.29 0.49 0.36 
SM5.2R/MNDO(d) 0.27 0.45 0.33 
S M 5 . 2 R / M N D O 0.26 0.45 0.33 
S M 5 . 2 R / A M 1 0.27 0.51 0.38 
S M 5 . 2 R / P M 3 0.26 0.47 0.35 
S M 5 . 0 R 0.30 0.30 0.43 

chloroform 
S M 5 . 4 / A M 1 0.32 0.46 0.33 
SM5.4 /PM3 0.27 0.39 0.28 
SM5.2R/MNDO(d) 0.45 0.45 0.33 
S M 5 . 2 R / M N D O 0.46 0.45 0.33 
S M 5 . 2 R / A M 1 0.47 0.45 0.33 
S M 5 . 2 R / P M 3 0.44 0.41 0.30 
S M 5 . 0 R 0.50 0.50 0.41 

^Reported averages are for 67 organic solutes from our training set for which experimental 
solvation free energies are available in water, hexadecane, octanol, and chloroform. (A 
total of 268 data points.) 

w h i c h c o n t a i n s n o e x p l i c i t e lec t ros ta t ic o r S C F t r ea tmen t . A l t h o u g h i t is 
l i k e l y tha t the v e r y i n e x p e n s i v e S M 5 . 0 R a p p r o a c h w i l l h a v e d i f f i c u l t y 
p r e d i c t i n g s o l v a t i o n free energies i n cases w h e r e the charge d i s t r i b u t i o n 
w i t h i n a g i v e n so lu t e differs s i g n i f i c a n t l y f r o m the i m p l i c i t d i s t r i b u t i o n s 
p a r a m e t e r i z e d i n t o the m o d e l , S M 5 . 0 ' s p r e d i c t i o n s fo r t h e e x a m p l e 
m o l e c u l e s a n d ove ra l l t r a i n i n g set are r ea sonab ly s i m i l a r to those p r e d i c t e d 
b y S M 5 m o d e l s w i t h m o r e r igorous e lectrosta t ic t rea tments . 
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To compare the performance of the S M J C models in water, 1-octanol, 
hexadecane, and chloroform, we selected the subset of organic solutes from 
the training set for these solvation models for which the experimental free 
energy of solvation is known for all four solvents. This subset contains 6 8 
molecules. Table 9 compares the average absolute value of the A G E N P 

a n d G C D S terms for various S M J C models in 4 solvents. As mentioned earlier, 

the SM5.4 methods typically have the largest ( | A G E N P | ) , while the SM5.2 

methods with the usually smaller class II charges have ( I A G E N P I ) that are 

only one half to one-third as large as the SM5.4 counterpart. It is 
interesting to note that the class II charges produced by the A M I 
Hamiltonian appear to be the most similar to the class IV charges, while the 
M N D O and MNDO(d) Hamiltonians produce much less charge separation. 

The ( |G C D S | ) terms have opposite trends to make up for the differences in 

the electrostatics. 
Table 10 contains the mean unsigned errors in the absolute free 

energies of solvation from the gas phase into each of our four considered 
solvents as well as the unsigned error in the free energy of transfer from 
water to an organic solvent and the resulting error in the log of the 
estimated partition coefficient. Note that in general the SM5.4 and SM5.2 
models perform similarly in both the mean unsigned error of the absolute 
free energies and the mean unsigned error of the log of the partition 
coefficient. The results in chloroform are an exception to this trend. The 
SM5.4 models were especially reparameterized for chloroform and hence 
they do achieve a significantly improved mean unsigned error in the 
absolute free energies of solvation. (The SM5.2R and SM5.0R models are 
parameterized for chloroform solvent at the same time as 8 9 other organic 
solvents, although a solvent descriptor is included which helps distinguish 
electronegative-halogen-containing solvents.) However, both the SM5.4 
and SM5.2R models are shown to perform similarly in their ability to 
predict chloroform/water partition coefficients. SM5.0R generally is shown 
to have slightly larger errors than the SM5.4 and SM5.2R parameterizations, 
but still produces answers that are within reason considering the simplicity 
of the model. 

4. Concluding remarks 
We have developed a number of universal solvation models based on 

quantum mechanical treatment of the solutes, with solute polarizability 
included self-consistently. Both electrostatics and first-solvation-shell 
effects are treated by 3-D modeling. Hydrogen bonding of solute with 
solvent and solute disruption of solvent-solvent hydrogen bonding are 
both included. Solute functionality is recognized on the basis of atomic 
numbers and geometry only; thus the inconvenience (and occasional 
ambiguity) of assigning atomic types is avoided. 

The solvation models are parameterized directly in terms of free 
energies, which are the critical thermodynamic quantities for predicting 
equilibria. One possible application is the prediction of log Poctanol-water> 
which is a widely used measure of lipophilicity, the movement of organic 
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compounds through cells, and drug activity. We hope the models will be 
useful for a variety of purposes in the humanistic endeavor of designing 
better drugs. 
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Foundation. 
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Chapter 9 

Rational Approaches to Inhibition of Human Osteoclast 
Cathepsin K and Treatment of Osteoporosis 

Sherin S. Abdel-Meguid 1, Baoguang Zhao 1, Ward W. Smith 1, Cheryl A . Hanson 2, 
Judith LaLonde 1, Thomas Carr 3, Karla D'Alessio 2, Michael S. McQueney 2 , 

H. -J . Oh 3, Scott K. Thompson 3, Daniel F. Veber 3, and Dennis S. Yamashita 3 

1 Department of Macromolecular Sciences, 2 Department of Protein Biochemistry, 
and 3 Department of Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, 

709 Swedeland Road, King of Prussia, PA 19406 

Novel , potent and selective human osteoclast cathepsin K inhibitors 
have been designed based on knowledge derived from the crystal 
structure o f papain bound to a tripeptide aldehyde. Cathepsin K is a 
thiol protease belonging to the papain superfamily. Unl ike previously 
known crystal structures o f that family o f enzymes in which ligands 
bind to the nonprime side o f the active site, our papain structure shows 
the ligand in the prime direction. This observation and the 
identification o f key interactions between the protein and the ligand 
inspired the design of a novel class o f inhibitors spanning both sides o f 
the active site. The crystal structure of the first member o f this class 
bound to cathepsin K confirmed our design hypothesis. Inhibitors o f 
cathepsin K are potential drugs for the treatment of osteoporosis. 

Recent success in the rational design of novel, potent HIV-1 protease inhibitors and 
the subsequent verification that they are highly effective drugs, has corifirmed the 
important role o f rational design in the drug discovery process. Most o f these drugs 
were designed based on knowledge derived from the crystal structures of H I V 
protease, renin and other aspartyl proteases (1,2). Many other examples o f rational 
drug design are now available (3). Here, we w i l l describe the structure-based design 
of one chemical class o f cathepsin K inhibitors that are potential drugs for the 
treatment o f osteoporosis and we w i l l show how the crystal structure o f an inhibitor of 
cathepsin K bound to papain inspired the rational design process. 

© 1999 American Chemical Society 141 
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Bone Remodeling and Osteoporosis 

Bone remodeling is a normal and dynamic process involving deposition and resorption 
o f bone matrix. Bone is formed by mature osteoblast cells, while osteoclasts are 
responsible for bone resorption. Osteoclasts are multinuclear giant cells that solubilize 
mineralized bone matrix through secretion o f proteolytic enzymes into an 
extracellular, sealed, low p H compartment on the bone surface. It is believed that 
osteoporosis, a disease characterized by low density, high porosity and brittleness of 
bone, results from imbalance between bone formation (osteoblasts) and resorption 
(osteoclasts). 

Cathepsin K and its Role in Osteoporosis 

Cathepsin K is a recently discovered member of the papain superfamily of cysteine 
proteinases that is selectively and highly expressed in osteoclasts (4,5). It is secreted 
as a 314 amino acid proenzyme containing a 99 amino acid leader sequence (6). The 
proenzyme self-processes at low p H to generate the mature form (7). The crystal 
structures o f cathepsin K in the presence and absence of bound ligands have been 
determined (8,9). The enzyme folds into two subdomains separated by the active site 
cleft, a characteristic o f the papain family of cysteine proteases. 

Cathepsin K is believed to play an important role in bone resorption and is a 
potential therapeutic target for treatment of diseases involving excessive bone loss 
such as osteoporosis. This is supported by two pieces of evidence. One, it has been 
known for over a decade that classical thiol protease inhibitors such as E-64 and 
leupeptin inhibit bone resorption (10,11). Two, defects in the gene encoding cathepsin 
K have been linked recently to pycnodysostosis, a disease characterized by skeletal 
defects such as dense, brittle bones, short stature and poor bone remodeling (12). 

Papain as a Surrogate for Cathepsin K 

The absence of sufficient cathepsin K for crystallographic structure determination 
early-on in this study compelled us to search for a suitable model. Papain, having 
46% identical amino acid sequence to cathepsin K , was chosen because of the 
availability o f its structure in the presence and absence o f ligands. A number of 
crystal structures o f papain with bound inhibitors had been reported (13, 14, 15). The 
inhibitors in all o f these structures were found to bind on the nonprime side of the 
active site (Figure la) . Using these structures, we modeled a number of our di- and 
tri-peptide aldehyde inhibitors into the nonprime side o f the active site o f papain and 
into a homology model o f cathepsin K derived from papain. These modeling studies 
did not explain our S A R data which showed strong preference for the presence of a 
Cbz or other aromatic moiety at the amino terminus of these peptides. Thus, to 
rationally design inhibitors o f cathepsin K it was necessary to obtain crystal structures 
using our own inhibitors. Again, papain was selected because it is commercially 
available in large quantities ( I C N Biomedicals #1009-24) and because its 
crystallization and crystallographic studies are wel l documented (16). 
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Figure 1. a) Ribbon drawing o f the crystal structure of the complex o f papain with 
leupeptin. b) Ribbon drawing o f the papain complex with the peptide aldehyde 
inhibitor Cbz-Leu-Leu-Leu-OH. The figure was prepared with M O L S C R I P T (22). 
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Crystal Structure of Papain/Cbz-Leu-Leu-Leu Aldehyde 

We have determined the crystal structure o f papain bound to the Cbz-Leu-Leu-Leu 
aldehyde whose chemical structure is shown in Figure 2. The structure o f the complex 
was obtained using crystals grown by vapor diffusion from a solution o f 0.1 M Tris-
HC1 at p H 8.5 containing 0.5 M sodium citrate and 20% P E G 600. The crystals 
belong to the monoclinic space group C2 , with a=100.5 A, b=50.7 A, c=62.3 A, 
P=99.9° and one molecule/asymmetric unit. They grow in a space group different 
from those previously reported for papain/ligand complexes. The crystal structure of 
the papain/Cbz-Leu-Leu-Leu aldehyde was solved by the molecular replacement 
method (/ 7), using the structure o f papain (PDB code 1PIP; 18) as a starting model. 

Surprisingly, the inhibitor in our structure was found to bind on the prime side 
o f the active site (Figure lb) . A major point o f interaction between the inhibitor and 
the protein was an edge-to-face interaction between the phenyl ring of the inhibitor 
and the indole ring o f Trpl81 (Figure 3). This tryptophan is conserved between 
papain and cathepsin K . 

In order to ensure that the novel binding mode observed in the crystal structure 
o f the papain/Cbz-Leu-Leu-Leu aldehyde was not an artifact o f crystallization, we 
produced crystals o f papain bound to leupeptin under exactly the same conditions as 
those used for the papain/Cbz-Leu-Leu-Leu aldehyde. The crystals were 
isomorphous, and our structure o f the papain/leupeptin complex was nearly identical 
to that previously reported (Figure la), with the inhibitor bound to the nonprime 
subsites (SI to S3; 19) o f the enzyme. 

Design of a Novel Cathepsin K Inhibitor Based on the Crystal Structure of the 
Papain/Cbz-Leu-Leu-Leu aldehyde 

The observations that inhibitors containing Cbz or other aromatic groups at the amino 
terminus bind to the prime side of the active site and that such binding may be 
facilitated by the interaction with Trpl81 led to the design o f novel inhibitors spanning 
both sides o f the active site (Figure 4). The prototype of this class o f inhibitors was a 
symmetric inhibitor that resulted from an overlay of the Cbz-Leu-Leu-Leu aldehyde 
and leupeptin papain crystal structures. The two inhibitors were merged 
computationally by replacing their aldehyde functions with a single ketone (Figure 4). 
The resulting model o f a ketone-containing inhibitor was further simplified by 
removal o f the side chains on both sides of the ketone moiety. This was necessary 
since the arginyl and leucyl sidechains occupied the same region o f space. 
Furthermore, a homology model o f cathepsin K derived from the structure of papain 
suggested that Trp l84 of cathepsin K (Trpl77 in papain), a highly conserved residue 
within the papain superfamily, would form a better aromatic-aromatic interaction with 
the Cbz moiety. Thus, the hypothetical inhibitor was shortened by one Leu residue 
from the right side (Figure 4), resulting in a yet smaller molecule. A second Cbz 
moiety was introduced on the left side (Figure 4), as a final step to make the inhibitor 
truly symmetric. This was done not to mimic any symmetry in the active site (there is 
none), but rather to simplify the chemical synthesis o f this initial member of a new 
class o f inhibitors. This Cbz group was also hypothesized to reach to Tyr67 on the 
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2 a . 

Leupeptin 

Leu-Leu- Arg-aldehyde 

2 b . 

Cbz-tripeptide aldehyde 

Cbz-Leu-Leu-Leu-aldehyde 
Figure 2. Chemical structure of a) leupeptin and b) Cbz-Leu-Leu-Leu-aldehyde. 

Figure 3. Stereo view of the active site of papain bound to Cbz-Leu-Leu-Leu-OH. 
Inhibitor atoms are drawn as ball-and-stick. 
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Figure 4. Schematic drawing o f the design of the symmetric diacylaminomethyl 
ketone inhibitor based on the crystal structures of papain bound to leupeptin and 
to Cbz-Leu-Leu-Leu-aldehyde.  O
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nonprime side o f the cathepsin K active site for additional aromatic-aromatic 
interaction. The resulting diacylaminomethyl ketone (l,3-bis[[N-
[(phenylmethoxy)carbonyl]-L-leucyl]amino]-2-propanone) is shown in Figure 4. 

Binding of the Novel, Symmetric Diacylaminomethyl Ketone to Cathepsin K 

The novel diacylaminomethyl ketone is a selective, competitive, reversible inhibitor of 
cathepsin K with a K j o f 23 n M (20). Spanning both sides o f the active site has 
allowed for enhanced potency and selectivity by taking simultaneous advantage of 
interactions on the nonprime and prime sides o f the active site, and by allowing the use 
of a less reactive electrophilic carbon for attack at the cysteine. Yamashita et al. (20) 
have shown that this diacylaminomethyl ketone is a relatively poor inhibitor of papain, 
cathepsin L , cathepsin B and cathepsin S, with Kj }app o f 10,000 n M , 340 n M , 1,300 
n M and 890 n M , respectively. 

To confirm our design hypothesis, we have determined the crystal structure of 
diacylaminomethyl ketone bound to cathepsin K . Data for the structure determination 
were obtained from crystals grown using vapor diffusion from a solution of 10% 
isopropanol, 0.1 M NaPC>4-citrate at p H 4.2. These crystals belong to the tetragonal 
space group P432i2 , with a=57.7 A, c=131.1 A, and the unit cell contains one 
molecule/asymmetric unit. The crystal structure was determined using the molecular 
replacement method (17) and a model consisting o f all atoms from the crystal structure 
reported by Zhao et al. (8). 

The diacylaminomethyl ketone inhibitor binds in the cathepsin K active site as 
predicted. It spans both sides o f the active site (Figure 5) and makes a number of key 
interactions with the enzyme (Figure 6). The phenyl groups on both ends o f the 
inhibitor engage Trp l84 and Tyr67 in a face-face and edge-face interaction, 
respectively (Figure 7). The crystal structure clearly shows the inhibitor covalently 
attached to the enzyme at the sulfur atom of Cys25 (the active site cysteine) as 
expected. The P2 leucyl sidechain o f the inhibitor fits snugly in the hydrophobic S2 
pocket defined by residues Met68, Leu209, A l a l 3 4 , A l a l 6 3 and Tyr67 (Figure 6). 
Hydrogen bonding interactions are seen between N D 1 of H i s l 6 2 , N E 2 o f G l n l 9 and 
the backbone amide nitrogens of Cys25 and Gly66, all of which donate a hydrogen to 
oxygen atoms of the inhibitor. The remainder o f the inhibitor interacts poorly or not at 
all with the enzyme indicating potential for further optimization o f this class o f 
inhibitors. 

Conclusions 

The design hypothesis generated from the crystal structures o f papain bound to Cbz-
Leu-Leu-Leu aldehyde and to leupeptin resulted in the design and synthesis o f a novel, 
potent, reversible and selective symmetric inhibitor. Confirmation was achieved 
through crystallographic structure determination of the resulting diacylaminomethyl 
ketone inhibitor bound to cathepsin K . This in turn led to the generation of numerous 
novel inhibitors o f cathepsin K that span both sides o f the active site as described by 
Yamashita et al (20) and Thompson et al. (21). These new inhibitors were then 
optimized through iterative cycles of structure-based design. Although the papain 
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Human Cathepsin K - Diacylaminomethyl Ketone 
Figure 5. Ribbon drawing of the crystal structure of the complex of human 
cathepsin K with the symmetric diacylaminomethyl ketone. 
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Figure 7. Stereo view of the active site o f the complex of human cathepsin K with 
the symmetric diacylaminomethyl ketone. Inhibitor atoms are drawn as ball-and-
stick. 
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structures provided pivotal insights for the design of the first inhibitors, further 
generations o f inhibitors designed based on this preliminary insight required 
optimization through numerous crystal structures o f cathepsin K , the actual target, 
with bound ligands. 

Finally, we conclude that use of surrogate enzymes can lead to important 
insights for the rational design of novel inhibitors, but optimization requires 
knowledge o f the structure of the target molecule preferably bound to inhibitors. This 
is reminiscent o f studies to identify renin inhibitors where surrogates such as 
endothiapepsin, rhizopuspepsin and penicillopepsin structures were used to design 
inhibitors o f renin (7). 
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Chapter 10 

Building a Hypothesis for Nucleotide 
Transport Inhibitors 

K . Raghavan 1, Scott D. Kahn 2, and John K . Buolamwini 3 

1 Molecular Simulations, Inc., 1804 N. Naper Boulevard, Suite 424, 
Naperville, IL 60563 

2 Molecular Simulations, Inc., 9685 Scranton Road, San Diego, C A 92121 
3 Department of Medicinal Chemistry, School of Pharmacy, University 

of Mississippi, University, M S 38677 

Structure-activity relationship studies of nucleoside transport inhibitors have 
revealed a diverse group of compounds with potent inhibitory activity against 
the major mammalian equilibrative nucleoside transporter, the es transporter. 
Inhibitors o f the es transporter have potential therapeutic applications for 
adenosine potentiation in heart disease and stroke, as well as for anticancer 
and antiviral chemotherapy. Computational techniques have been applied to 
derive a pharmacophore hypothesis o f generalized chemical interaction 
features that can be used to search 3D molecular databases to identify novel 
inhibitors. The methodology of feature-based hypothesis generation and the 
results are presented . 

Nucleoside transporters (NT) are integral membrane glycoproteins required for the 
cellular uptake o f physiological nucleosides and their analogs (1). Nucleoside 
transport inhibitors have potential therapeutic uses in many areas including heart 
disease, anti-cancer and anti-viral chemotherapy. Since most o f the compounds that 
are known to inhibit N T do not meet the requisite pharmacological profiles , there is 
need for the discovery o f better inhibitors. Among the known, potent inhibitors, 
N B M P R [N6-(4-nitrobenzyl)thiomosine] and dipyridamole are most commonly used. 
The es (equilibrative inhibitor-sensitive) transporter is sensitive to inhibition by 
N B M P R whereas the ei (equilibrative inhibitor-insensitive) transporter is relatively 
resistant. The es transporter, which is the focus o f this study, is by far the major 
nucleoside transporter o f most mammalian cells examined to date. It has been 
known that the inhibition by N B M P R arises from specific, high affinity binding (Ka = 
0.1-1.0 nM) at the transporter protein(2). Recently, the c D N A o f the es transporter 
protein has been cloned(3). 

A s is a common case in drug discovery, the 3-dimensional structure o f the es 
transporter protein is not known, requiring an indirect approach to be taken to 
analyze known inhibitors followed by the generation o f pharmacophore hypotheses 

© 1999 American Chemical Society 153 
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that capture the binding requirements o f potentially improved inhibitors. The binding 
studies on an array o f structures including a number o f analogs o f 6-N-(4-
Nitrobenzyl) Adenosine are available (1) and have been used in this study. 

In an effort to gain better understanding o f nucleoside transport inhibitors and 
find novel inhibitors, a study o f pharmacophore analysis on known inhibitors has 
been carried out. The resulting hypothesis was used to search structural databases of 
molecular structures, and has yielded a set o f new and structurally diverse 
compounds satisfying the pharmacophore features derived to be responsible for 
activity against the nucleoside transporter. The process o f hypothesis generation and 
the database results are presented in this article. 

Method 

Conformational Analysis. The molecules considered in the study are given in 
Figure 1. For each molecule, conformations were generated using Catalyst software 
(4) with the poling method (5-7). Briefly, poling is a direct method for promoting 
conformational variation. During the stage o f geometry optimization, this method 
introduces a penalty function (poling function) that penalizes any conformer that is 
too close to another conformer in the set. Mathematically, the potential energy 
function is modified so that there is a repulsive wall at the location o f previously 
generated conformations. This effectively forces the search away from the location 
o f this pole (ie, an existing conformation), and in so doing ensures broad coverage o f 
low energy conformations within a specified energy threshold. For the purpose o f 
identifying pharmacophores, it is important to consider energetically accessible 
conformations in the neighborhood o f the lowest energy conformation as the precise 
binding conformation is not known. In fact, it is possible that the binding 
conformation can be quite different from the lowest energy conformation (8). 

Pharmacophore Development Catalyst hypothesis can consider molecular features 
such as, hydrogen bond (HB) donors and acceptors, positive and negative ionizable 
centers, positive and negative charge centers, aliphatic and aromatic hydrophobic 
centers and aromatic rings (9). In addition, molecular substructures and user defined 
features can also be included in the generation o f catalyst hypothesis. The features 
used in this study, based on visually examining the molecules are: H B donor, H B 
acceptor, Hydrophobic center, and Ring Aromatic. The common feature hypothesis 
generation algorithm (10) begins by identifying 3D configurations o f features (ie, a 
pharmacophore) common to the molecules. A molecule matches a configuration i f it 
possesses a set o f features and a conformation such that the set o f features can be 
superimposed with the corresponding locations o f each feature. A set o f features is 
considered superimposed i f each feature lies within a specified distance (tolerance) 
from the corresponding ideal location. Each molecule in the set is considered as 
reference molecule, and contribute to the initial set o f pharmacophore patterns to be 
considered across the entire set o f compounds. The requirement that all molecules 
match all features in a configuration can be relaxed. Certain molecules can be 
specified to miss one o f the features in a configuration being evaluated. It is also 
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possible to permit a specified number o f appropriately indicated molecules to 
completely miss a common pharmacophore configuration. In this regard, a complete 
miss is defined when two or more features must be omitted from a configuration for 
a molecule to map all remaining features. This ability to allow complete misses 
helps account for "active" molecules that may bind at different sites, or that simply 
do not require all o f the specified interactions for their activity. The configurations 
are identified by an exhaustive search, starting with small sets o f features and 
extending them until no larger common configuration exists. 

Molecular conformations within 10 kcal/mol from the minimum energy 
conformation were used for the subsequent hypothesis generation step. Figure 1 lists 
all the molecules used in this study and the number o f conformations used; the 10 
kcal/mol energy cutoff resulted in 19 to 103 conformations. The common features 
hypothesis method (also known as HipHop (10)) in Catalyst was used to generate 
potential pharmacophore hypothesis for the nucleoside transport inhibitors. 

Results and Discussion 

The hypothesis, shown in figure 2, contains one hydrogen bond donor, three 
hydrogen bond acceptors, and an aromatic ring with the relationship in 3D space as 
shown. The features, hydrogen bond donor and acceptor are depicted as two 
spheres, with the smaller sphere representing the location of the heavy atom in the 
ligand and the larger sphere representing the location of the receptor atom involved 
in the hydrogen bonding, thus considering the directionality o f the hydrogen bond as 
well. The aromatic ring is also shown with two spheres and an arrow in order to 
define the orientation o f the plane o f the ring, shown by the normal to the plane. 

Figure 3 shows two molecules from the study set, N B M P R and 2'-deoxy-6-
N-(4-nitrobenzyl)adenosine mapped on to the generated pharmacophore hypothesis. 
The S A R data show that a nitro substituent in the 4 position o f the 6-position benzyl 
group and the 3 ' hydroxyl group are important for the high affinity binding to the es 
transporter (1). The hypothesis derived recognizes these chemical features. The 
conformations selected for these molecules by Catalyst are 2.39 and 5.11 kcal/mol 
from their corresponding low energy conformations. The fit values represent how 
well the chemical features map within the centers o f location/tolerance in the 
hypothesis. This hypothesis was used to search different databases to find molecules 
that contains these chemical features. The databases used are N C I (National Cancer 
Institute's open database), Derwent, Maybridge and ACD(Available Chemicals 
Directory) (11). The N C I database that was searched contains 123219 structures. 
The search with the hypothesis resulted in 186 structures ranging in molecular weight 
from 316.27 to 1664.88. Consideration of the low molecular weight o f known 
inhibitors, a subset o f these hits with a molecular weight less than 605 narrows the 
set to 125 structures requiring further analysis. The search results contain a number 
o f interesting structures that can be tested for activity against nucleoside 
transporters. For example, figure 4 shows a molecule with a totally new ring system 
connecting the nitro benzyl group with the sugar ring. This is a new family that can 
be considered. There were also molecules with pyridyl ring in place o f nitrobenzyl 
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Figure 2. A Common feature hypothesis for NT inhibitors 
derived by Catalyst. Hydrogen bond donor (magenta), 
hydrogen bond acceptors (green) and ring aromatic (yellow) 
are the features in the hypothesis. 

(Figure is printed in color in color insert.) 

N B M P R N 6 -(4-nitrobenzyl)thioinosine (fit=5.0 ; E c o n f = 2 . 3 9 kcal/mol) 
2 '-deoxy-6-N-(4-nitrobenzyl)adenosine ( fit=3.67;Econf=5.11 kcal/mol) 

Figure 3. NBMPR and 2'-deoxy-6-N-(4-nitrobenzyl) adenosine 
mapped onto the hypothesis. 
(Figure is printed in color in color insert.) 
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Figure 4. A hit from a search on the NCI database (267224) 
(Figure is printed in color in color insert.) 
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Figure 5. Example of pterine, flavone and isoflavone analogs 
from the NCI database mapped onto the pharmacophore 
hypothesis. 
(Figure is printed in color in color insert.) 
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group, and it has been known that such compounds posses activity in the micromolar 
range(12). The search on the N C I database included a number of pteridine (figure 
5) analogs. Pteridine class o f molecules are already known to inhibit nucleoside 
transport(13). Those analogs that have not been tested can be tested for improved 
activity. In addition, a number o f flavones and isoflavones (figure 5) came out in the 
search from N C I database. To our knowledge this class o f molecules have not yet 
been tested for activity against nucleoside transport. It would be interesting to test 
this class o f molecules as these are natural products and known to be less toxic. 
Topoisomerase II inhibitors, etoposide and teniposide (figure 6) also appeared in the 
list from N C I . It is very encouraging to see that this class o f structures are identified 
by the hypothesis. Because both etoposide and teniposide have been shown to be 
selective for the es-transporter (14). Some structures with selenium instead of sulfur 
or N H - linking the nitrobenzyl group also appeared as N C I database hits. 

A search on the Maybridge database (53404 compounds) resulted in only 
seven hits. Mostly these are flavone and isoflavone family. The Derwent World 
Drug Index (49661 compounds) was also searched resulting in a number o f 
interesting structures, including Daidzin, Genistin (isoflavones), Liquirtin (a 
flavanone), members of pteridine family of compounds and also anthraquinones. For 
example, figure 7 shows mopidamole and carrninate. Mopidamole, a 
pyrirmdopyrirnidine, is already known to be an inhibitor o f the nucleoside transporter 
and was not included in the study set used to generate the hypothesis(15). Also, the 
molecule carrninate is o f interest. Recently, a Chinese group has isolated two 
antibiotics from a fungus found in Antartican soil, and shown them to inhibit 
thymidine and uridine transport with I C 5 0 ' s at low micromolar range and also 
potentiate the anticancer activity of antimetabolites in cultured tumor cells(16). One 
o f these antibiotics is a 3,9-dihydroxy-l-methoxy-7-methylanthraquinone. Carrninate 
is a derivative of this molecule with a glycosylation. The hypothesis suggests that 
glycosylation of the anthraquinone analog would still meet the functional feature 
requirements and can be tested. 

Finally the database of Available Chemicals Directory containing 230000 
compounds was searched producing 276 hits. O f these, there were only 100 
molecules with molecular weight less than 500. The results once again include a 
number o f flavones in addition to other families including nucleoside analogs. 

Summary and Conclusion 

The structures of a set o f nucleoside transport inhibitors have been analyzed and a 
pharmacophore hypothesis developed using the common feature hypothesis 
generation method (HipHop) in Catalyst. The hypothesis generated contains the 
following chemical features: one hydrogen bond donor, three hydrogen bond 
acceptors and an aromatic ring. The hypothesis was used to search four different 
databases of structures (NCI , MayBridge, Derwent World Drug Index and Available 
Chemicals Directory). The database search results produced a number of interesting 
hits suggesting new classes o f molecules that can be tested for activity against 
nucleoside transport. The database hits also included molecules that are already 
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known to be N T inhibitors, but were not included in the original study set. This 
increases the confidence level that the hypothesis captured the necessary chemical 
features that may be important for N T inhibition. Among the new classes o f 
molecules suggested by the hypothesis are the natural products, flavones and 
isoflavones and some anthraquinone analogs. We are currently in the process o f 
acquiring and testing these compounds for N T binding/inhibition. The results wi l l 
also be used in the refinement o f the hypothesis to increase the specificity/selectivity. 
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Chapter 11 

Unified Pharmacophorc Model for Cannabinoids and 
Aminoalkylindoles Derived from Molecular 

Superimposition of CB1 Cannabinoid Receptor 
Agonists CP55244 and WIN55212-2 

Joong-Youn Shim, 1 Elizabeth R. Collantes, 1,3 and Wil l iam J. Welsh, 1 and 
Al lyn C . Howlett 2 

1 Department of Chemistry and Center for Molecular Electronics, 
University of Missouri-St. Louis, St. Louis, MO 63121 

2 Department of Pharmacological and Physiological Science, Saint Louis 
University School of Medicine, St. Louis, MO 63104 

Novel superimposition models were developed based on 3-D 
pharmacophore mapping of the two highly potent CB1 cannabinoid 
receptor agonists: the cannabinoid CP55244 and the 
aminoalkylindole (AAI) WIN55212-2. The superimposition models 
so derived confirm earlier speculation about certain key 
pharmacophoric elements common to both the cannabinoids and 
AAIs. The present models also provide insight into the curious 
observation that the Cl hydroxyl group of certain cannabinoids may 
be unnecessary for the cannabinoid activity. To test the validity of 
our superimposition models, Comparative Molecular Field Analysis 
(CoMFA) was employed to construct a 3D-QSAR using a mixed 
training set composed of twelve cannabinoids and twelve AAIs. 

Despite their obvious structural dissimilarities, the cannabinoids and 
aminoalkylindoles (AAIs) have been shown by numerous studies (7-5) to exhibit 
similar in vitro and in vivo cannabimimetic activities. This body of evidence suggests 
that the cannabinoids and AAIs interact with the same cannabinoid receptor and share 
at least some regions in common when bound to the receptor to elicit the cannabinoid 
activity. Thus, it is highly possible that they compete for the same binding regions of 
the C B i cannabinoid receptor. In support of this hypothesis, binding studies (7,6) 
have revealed that the potent cannabinoid [ 3 H]CP55940 was displaced by 
WIN55212-2 and other A A I s and that, conversely, [ 3H]WIN55212-2 was displaced 
by A9-tetrahydrocannabinol ( A 9 - T H C ) and other cannabinoids (Figure 1). 
Furthermore, irreversible covalent binding of an isothiocyanato A A I to the C B i 
cannabinoid receptor obstructed any subsequent interactions with the cannabinoid 
agonist [ 3 H]CP55940 (7). 

3 Current address: Monsanto Life Science Company, St. Louis, MO 63167 
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6 

4' 5' 
WIN55212-2 

Figure 1. The cannabinoids and A A I s used for developing superimposition 
models. 
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Structure-activity relationship (SAR) studies of the cannabinoids (8-11) and 
the A A I s (12-14) revealed pharmacophoric elements common to both classes of 
compounds (see Figure 1): (1) a lipophilic and/or sterically bulky group (i.e., the C3 
side chain in the cannabinoids and the C3 aroyl group in the AAIs ) that appears to 
be a structural prerequisite for cannabinoid activity (70); (2) a polar oxygen atom 
(i.e., the C I hydroxyl group of the phenolic A-ring in the cannabinoids and the C3 
carbonyl oxygen in the AAIs) that may form a hydrogen bond with the receptor (75) 
and (3) the cyclic ring system (i.e., the cyclohexyl C-ring in the cannabinoids and 
the indole ring in the AAIs) . Another polar group, specifically the C9 hydroxyl 
group of the cyclohexyl C-ring of 9-nor-9P-hydroxyhexahydrocannabinol (HHC) , a 
9-hydroxylated analog of A 9 - T H C , in the cannabinoids and the nitrogen atom of the 
aminoalkyl side chain in the A A I s , is also considered an important pharmacophoric 
element. 

In order to understand the similarity in cannabimimetic activity of these 
structurally quite distinct cannabinoids and A A I s and to identify common 
pharmacophoric features, some efforts have been made to superimpose 
cannabinoids and A A I s (16-18). Two distinct superimposition models, hereafter 
known as the Huffman model and the Makriyannis model, have evolved from these 
superimposition studies. The Huffman model (77), developed by superimposing a 
structurally modified analog of WIN55212-2 with A 9 - T H C (Figure 1), assumed a 
common functionality between the C3 side chain of the cannabinoids and the N l 
aminoalkyl side chain of the A A I s . Huffman et al. noted a similarity between the 
N l aminoalkyl side chain in the A A I s and the C3 side chain in the cannabinoids in 
terms of the sensitivity of activity with side-chain length. Their superimposition 
model ignored the benzene ring in the indole moiety of WIN55212-2 with respect 
to overlaying it with any part of A 9 - T H C , thus implying that this benzene ring is 
unimportant. This decision is questionable, as evidenced by the sharp decrease 
both in vivo and in vitro activities of a series of pyrrole analogues (79) versus the 
corresponding A A I analogues. The Huffman model was derived without precise 
structural information, and suffers from a lack of consideration of the polar nature 
of the heterocyclic N l aminoalkyl side chain of the A A I s (3). 

The Makriyannis model (18) was derived by superimposition of H H C with 
WIN55212-2 whose structure was ascertained from interpretation of 2 D - N M R 
spectra and M D simulations. In the Makriyannis model, the C3 aroyl group of the 
A A I is superimposed on the C3 side chain of the cannabinoid, and the N atom of 
the N l side chain of the A A I was positioned to nearly coincide with the hydroxyl 
group of the cyclohexyl C-ring of the cannabinoid. Nevertheless, the rationale for 
choosing specific atoms to fit for superimposition remains unclear. 

Although largely incompatible, the Huffman and Makriyannis models both 
align the C I hydroxyl group of the cannabinoids with the C3 aroyl oxygen of the 
AAIs . This point of agreement is consistent with the notion of a common hydrogen-
bonding interaction with the corresponding region of the receptor's binding site 
(75). Eissenstat et al. (72) recently proposed a model in which the C I hydroxyl group 
of the cannabinoids overlays the N l side chain of the AAIs . They based their choice 
on the observation that the C9 hydroxyl group of the cannabinoids functioned 
differently from the morpholino N in the pravadoline series (14). As yet, however, no 
unified superimposition model for both cannabinoids and AAIs has been generally 
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accepted. Consequently, it was felt that the cannabinoid/AAI superimposition 
models warranted further investigation and validation. 

In the present work, novel superimposition models were developed based on 
3-D pharmacophore mapping of two highly potent C B i cannabinoid receptor 
agonists CP55244 and WIN55212-2 using starting conformations that corresponded 
to those ascertained by Tong et al. (20) and Shim et al. (27), respectively. CP55244 
is uniquely different from A 9 - T H C and H H C in that it possesses an additional 
pharmacophoric element which is not found in the classical A B C tricyclic 
cannabinoids (77). The D-ring methanol extension (comparable to the 
hydroxypropyl in CP55940) forms a potential hydrogen bonding site which may 
confer the extremely high potency exhibited by CP55244. The superimposition 
models so derived confirm earlier speculation about certain key pharmacophoric 
elements common to both the cannabinoids and A A I s . The present models also 
provide insight into the curious observation that the C I hydroxyl group of certain 
cannabinoids may be unnecessary for the cannabinoid activity (22). 

Computat ional Methods 

The highly potent CP55244 (Ki = 0.11 nM) and WIN55212-2 (Ki = 1.1 nM) were 
selected to represent the cannabinoids and A A I s , respectively (77, 27). CP55940 
(32 in Figure 2), which is structurally similar to CP55244 but without the D-ring, 
and WIN55212-2 have been used as the radioligands to measure binding potency of 
other cannabinoids and A A I s [for WIN55212-2, see references 6 and 72; for C P -
55940, see references 70, 77, and 27]. The conformations of the cannabinoids and 
A A I s were taken from our previously derived C o M F A models (20, 27). For 
WIN55212-2, additional conformations were explored by conducting a systematic 
search of the torsion angles col(C2=C3-C=0) and a)2(0=C-Cr-C2 ,). 

The D I S C O module [Distance Comparison (DISCO) technique (23)], 
accessed through the molecular modeling program Sybyl (version 6.2) (24), was 
employed to extract the common pharmacophoric elements from the cannabinoids 
and A A I s . D I S C O first identifies certain predefined pharmacophoric features, i.e., 
hydrophobic center, donor site, acceptor site, donor atom, acceptor atom, for each 
compound and then generates superimposition models by matching common 
features. Based on these superimposition models, the corresponding 
pharmacophoric elements were identified. Super-imposition models of CP55244 
and WIN55212-2 were compared and evaluated using the following criteria: (1) 
root-mean-square (RMS) fit of corresponding pharmacophoric elements, (2) proper 
orientation and overlap of the C3 dimethylheptyl side chain of CP55244 with the 
C3 aroyl moiety of WIN55212-2 (which was deemed critical for tight binding), (3) 
the number of pharmacophoric elements, and (4) the degree of overlap of molecular 
volumes. Probably because of the difficulty in assigning a hydrophobic center for 
the C3 dimethylheptyl side chain of CP55244, D I S C O failed to designate this 
moiety as "hydrophobic". Instead, superimposition models were chosen that 
exhibited proper orientation and overlap of these hydrophobic moieties. 
WIN55212-2 was used as the reference compound for fitting as it contains a greater 
number of pharmacophoric features than CP55244. The superimposition models 
selected by D I S C O were further refined by fitting WIN55212-2 to CP55244 using 
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the "field fit" option in Sybyl. After field fitting for 500 iterations using the 
simplex algorithm in which the partial atomic charges for the electrostatic 
interactions were calculated using the Gasteiger-Marsili formalism (25) were 
included, WIN55212-2 was then subjected to full geometry optimization. To 
compare with the present superimposition models, the Huffman and Makriyannis 
models were reconstructed by superimposing CP55244 and WIN55212-2 in the 
conformations considered in the present report using the same alignment atoms as 
described in the respective original papers. 

To test the validity of our superimposition models, Comparative Molecular 
Field Analysis ( C o M F A ) (27) was employed to construct a 3 D - Q S A R using a 
mixed training set composed of twelve cannabinoids and twelve A A I s (Table I and 
Figure 2). In view of the structural dissimilarity of CP55244 and WIN55212-2, 
different alignment rules were chosen for the cannabinoids and A A I s , specifically: 
the phenolic oxygen, the C9 hydroxyl oxygen, and the C I ' of the C3 side chain of 
CP55244 for the cannabinoids; and the C5 , C a of the N l side chain, and carbonyl 
oxygen at C3 of W1N55212-2 for the A A I s . The C o M F A models were then 
validated by predicting the p K i for a test set composed of eighteen cannabinoids 
and two A A I s . 

Results and Discussion 

Superimposition of CP55244 and WIN55212-2. DISCO (23) was employed to 
help identify the corresponding pharmacophoric elements in the cannabinoids 
(represented by CP55244) and the A A I s (represented by WIN55212-2). D I S C O 
found two separate A A I conformers designated Z and C that differ with respect to the 
torsion angle col(C2=C3-C=0). The value of col is -152.8° in the Z form and 29.2° 
in the C form (Figure 3). Superimposition models based on each form are illustrated 
in Figure 4 and summarized in Table H With WIN55212-2 in the Z form, DISCO 
identified five pharmacophoric features: (i) two around the C I phenolic oxygen of 
CP55244 and the C3 carbonyl oxygen of WIN55212-2 (oxygen as the acceptor atom 
and a donor site), (ii) one hydrophobic center for the C-ring of CP55244 and the 
benzene ring of the indole of WIN55212-2, and (iii) two around the D-ring hydroxyl 
group of CP55244 and the morpholino oxygen of WIN55212-2 (oxygen as an 
acceptor atom and a donor site). With WIN55212-2 in the alternative C form, DISCO 
identified three pharmacophoric features: (i) two around the C I phenolic oxygen of 
CP55244 and the C3 carbonyl oxygen of WTN55212-2 (oxygen as an acceptor atom 
and two donor sites), and (ii) one around the C9 hydroxyl oxygen of CP55244 and the 
morpholino nitrogen of WIN55212-2 as a donor atom. Both models displayed a high 
degree of overlap between the C3 side chain of CP55244 and the C3 aroyl moiety of 
WIN55212-2, consistent with the notion that a hydrophobic moiety is important for 
cannabimimetic activity (10, 12-14, 26). In addition, both models insinuate that 
addition of hydrophobic substituents to the second ring of the naphthyl group (i.e., 6' 
or T position) in WIN55212-2 enhance binding potency. 

Analysis of the present two superimposition models (hereafter called the Z 
and C models) provides some interesting comparisons. The molecular volume 
overlap is only slightly larger for the Z model (156 A3) than for the C model (142 
A3). In the Z model, the morpholino oxygen of WIN55212-2 is aligned with the D -
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Figure 2. Structures of cannabinoids and A A I s used as the training set to 
construct C o M F A s . Also shown are compounds 8,12, and 16,17,20,21,24, 
25, 27-35,37,39, and 40 which belonged to the test set. 
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R Compound R i R 2 Compound 

terf-butyl 14 methyl H 24 
1,1 -dimethy lpropyl 15 ethyl H 25 
1,1-dimethylbutyl 16 w-propyl H 26 
1,1 -dimethy lpentyl 17 H-propyl methyl 27 
1,1-dimethylhexyl 18 /i-butyl H 28 
1,1 -dimethylheptyl 19 allyl H 29 
1,1-dimethyloctyl 20 hydroxymethyl H 30 
1,1-dimethy lnonyl 21 hydroxyethyl H 31 
1,1-dimethy ldecyl 22 hydroxypropyl H 32 
1,1-dimethylundecyl 23 (CP55940) 

hydroxybutyl H 33 
methoxypropyl H 34 
aminomethyl H 35 

Figure 2. Continued. 
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Figure 3. Illustration of the A A I WIN55212-2 in both the Z form (left) and C form 
(right). 
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Table I. Observed versus calculated pK 4 values for the training set compounds. 

Compounds Z model C model 
p K i , pK i , residual p K i 5 residual 
obs'd calc'd calc'd 

AAIs 
WIN55212-2 -0.04 0.01 -0.05 -0.03 -0.01 

K S ) -2.95 -3.00 0.05 -3.11 0.16 
2 -2.55 -2.51 -0.04 -2.43 -0.12 
3 -1.74 -1.71 -0.03 -1.79 0.05 
4 -1.74 -1.80 0.06 -1.73 -0.01 
5 -1.32 -1.26 -0.06 -1.22 -0.10 
6 -3.41 -3.47 0.06 -3.46 0.05 
7 -2.65 -2.53 -0.12 -2.53 -0.12 
9 -1.68 -1.69 0.01 -1.76 0.08 
10 -1.48 -1.45 -0.03 -1.51 0.03 
11 -1.45 -1.73 0.28 -1.55 0.10 
13 0.12 0.25 -0.13 0.20 -0.08 

Cannabinoids 
CP55244 0.96 0.90 0.06 0.95 0.01 

Desacetyllevonantrodol 0.21 0.16 0.05 0.23 -0.02 
A 9 - T H C -1.01 -1.00 -0.01 -1.05 0.04 

14 -2.48 -2.62 0.14 -2.52 0.04 
15 -2.61 -2.37 -0.24 -2.39 -0.22 
18 -1.28 -1.08 -0.20 -0.99 -0.29 
19 -0.34 -0.63 0.29 -0.65 0.31 
22 -1.67 -1.74 0.07 -1.79 0.12 
23 -2.23 -2.11 -0.12 -2.18 -0.05 
26 -0.11 -0.11 0.00 -0.17 0.06 
36 0.00 0.06 -0.06 0.03 -0.03 
38 -0.63 -0.66 0.03 -0.64 0.01 
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Table H Comparison of the Z and C superimposition models. 

Z model C model 

WIN55212-2 
ool(C2=C3-C=0) 
a )2 (0=C-Cl , -C2 , ) 
Sybyl Energy (kcal/mol) 

-152.8 ° 
-133.5 ° 

41.223 

2 9 . 2 ° 
-134 .9° 

40.621 

D I S C O results 
Pharmacophoric features 
in terms of CP55244 

R M S fit 
Overlap volume 
(CP55244/WIN55212-2) 

C I hydroxyl oxygen • C I hydroxyl oxygen 
i . 1 acceptor atom 

i i . 1 donor site 
• C ring centroid 
i i i . 1 hydrophobic 

center 
• D ring hydroxyl 

oxygen 
iv. 1 acceptor atom 
v. 1 donor site 

0.35A 

i . 1 acceptor atom 
i i . 2 donor sites 

• C9 hydroxyl oxygen 
i i i . 1 donor atom 

0.35a 

156 A 3 / 330 A 3 (48 %) 142 A 3 / 330 A 3 (43 %) 

C o M F A statistics 
r cv 
r 2 

S E 
F 

0.464 (6 pc) 
0.988 
0.146 
239 

0.404 (6 pc) 
0.989 
0.142 
250 
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Figure 4. DISCO-derived Z and C superimposition models for CP55244 and 
WIN55212-2. The pharmacophoric features of the reference molecule 
(WTN55212-2) are represented as red spheres and those of CP55244 are 
represented as blue spheres. CP55244 is colored by atom type while 
WIN55212-2 is colored in purple (4a: Z model) and in orange (4b: C model). 

(Figure is printed in color in color insert.) 
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ring hydroxyl group of CP55244. In the C model, the morpholino nitrogen of 
WIN55212-2 is aligned with the C-ring hydroxyl group of CP55244. The C model 
bears a likeness to the Makriyannis model (75); however, the corresponding Z model 
shows no similarity to the Huffman model (77). Comparison of the lipophilic 
potentials of CP55244 and WIN55212-2 (Figure 5) reveals that the C3 side chain of 
CP55244 and the C3 aroyl moiety of WIN55212-2 are the most lipophilic parts of 
the respective molecules. Hence, it was considered reasonable to superimpose 
these two lipophilic moieties. 

Restricting the motion of the hydroxypropyl moiety attached to the C-ring in 
the AC-bicyc l ic cannabinoids (e.g., CP55940 (32)) or of the N l side chain in the 
A A I s (e.g., WIN55212-2) has been shown to increase cannabinoid activity. 
Representative of the unconstrained forms, the K i values for CP55940 (32) and 1 1 
are 1.1.4 n M (10,11) and 28 n M (27), respectively. In contrast, the K* values for the 
corresponding constrained analogues CP55244 and WIN55212-2 are 0.11 n M and 
I. 1 n M (77, 27), respectively. Specifying the Z model, these observations suggest 
that constraining corresponding (i.e., overlapping) moieties of the cannabinoids and 
A A I s w i l l promote favorable interaction with the C B i cannabinoid receptor and 
enhance binding potency (77). Based on the extensive S A R studies of AC-bicycl ic 
and ACD-t r icyc l ic nonclassical cannabinoids (i.e., CP55940, CP55244 and their 
derivatives), some workers (10, 28) have proposed that substitution of a unique 
hydrophilic moiety on the lipophilic D-ring is important for enhanced cannabinoid 
activity. In the Z model, this hydrophilic moiety in the cannabinoids is aligned with 
the hydrophilic morpholino oxygen of the A A I s which, in turn, is separated from 
the indole ring by a largely lipophilic string of atoms (i.e., -CH2-CH2-N-CH2-CH2-). 

The C model, which bears a resemblance to the Makriyannis model (18), 
seems to more properly address the importance of the C-ring C9 hydroxyl group in 
the cannabinoids and its similarity to the morpholino nitrogen in the A A I s . 
However, it has been suggested that the C9 hydroxyl group of the cannabinoids 
may be not essential for potent binding (10, 22) and, furthermore, that the 
cannabinoid C9 hydroxyl and the A A I morpholino nitrogen interact with different 
receptor binding sites (72). Noting that the sensitivity of K i to the length of the 
lipophilic alkyl N l substituent for a series of A A I s was similar to that observed for 
the cannabinoids with respect to variation in length of the lipophilic C3 alkyl side 
chain, Huffman et al. (77) decided to overlay these two lipophilic groups in their 
superimposition model. This choice would imply that the hydrophilic side chain of 
the A A I s (e.g., the O atom in the morpholino ring of W1N55212-2) is not critical. 
However, the Z model could explain why A A I s with an N l side chain of four to 
seven carbons exhibit high potency. Earlier workers have proposed that a specific 
hydrophobic region of the receptor borders the B and D rings of cannabinoids (10, 
II, 28). Consistent with this notion, the Z model superimposes the N l side chain 
of the A A I s on the hydrophobic substituents attached to the B and D rings of the 
cannabinoids. B y virtue of its ability to resolve this apparent inconsistency, the Z 
model may be superior to alternative superimposition models in terms of 
accommodating the structurally dissimilar cannabinoids and A A I s inside the same 
critical binding site of the C B i cannabinoid receptor. 
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Figure 5. Lipophilicity potentials for CP55244 and WIN55212-2 (Z form) on 
the Connolly molecular surfaces. The most lipophilic part is the C3 side chain 
in CP55244 and the C3 aroyl moiety in WIN55212-2. 
(Figure is printed in color in color insert.) 
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Construction of 3D-QSAR models. C o M F A was employed to build 3 D - Q S A R 
models (Figure 6) using a mixed training set of 12 cannabinoids and 12 AAIs . 
Separate C o M F A models were constructed for both the C and Z models. Our 
intention was to compare the statistical quality of the 3D-QSARs for the Z and C 
models for purposes of selecting one over the other. Unfortunately, equally strong 
linear correlations were obtained for the C model (r 2 = 0.989) and the Z model (r 2 = 
0.988). On the other hand, the cross-validated r 2 ( r C v 2 ) was somewhat higher for the 
Z model (0.464) than for the corresponding C model (0.404). Both C o M F A models 
showed slightly greater contributions from the steric fields than the electrostatic 
fields (55 % vs. 45 % for the C model, and 53 % vs. 47 % for the Z model). Except 
for cannabinoids 27 and 35, the CoMFA-predicted pKj values were within one log 
unit of the corresponding observed values for a test set composed of 16 
cannabinoids and 2 A A I s (Table HI). 

A n attractive feature of C o M F A is its ability to provide visual representations 
of the principal steric and electrostatic fields that contribute to a 3 D - Q S A R model in 
terms of color-coded coefficient contour maps. The steric contour map (Figure 6) 
indicates that introducing a lipophilic side chain at C3 of the cannabinoids is 
consistent with high activity, in agreement with the known S A R . Substitution with a 
lipophilic group on the B or D ring in the cannabinoids, corresponding to the 
lipophilic N l side chain in the A A I s , is also consistent with enhanced activity. A 
sterically unfavorable region appears between the indole ring and morpholino side 
chain of the A A I s , suggesting that the corresponding region of the receptor binding 
site is conformational^ restricted for the A A I s . This same region of the receptor is 
believed to interact with the A ring of the cannabinoids which, however, is less 
conformational^ restricted. This distinction between the cannabinoids and the 
A A I s with regard to their interaction with this region of the receptor may in part 
explain any observed differences in their activity profiles. 

The C o M F A electrostatic contour map (Figure 6) reveals a significant 
contribution to activity from the electrostatic fields in the vicinity of the 
heterocyclic ring of the N l side chain in the A A I s . On the contrary, the absence of 
electrostatic fields around the corresponding C-ring substituents in the cannabinoids 
indicates little or no correlation with ligand binding affinity. 

Proposed Cannabinoid Receptor Map. Based on our superimposition models and 
the known S A R for the cannabinoid and AAIs , we have constructed a 
pharmacophoric map for the cannabinoid C B i receptor appropriate to both the 
cannabinoids and A A I s (illustrated in Figure 7 for the Z model). Similar to the one 
proposed by Howlett et al. (28) from the S A R for bi- and tricyclic nonclassical 
cannabinoids, this receptor map depicts the pharmacophoric elements required for 
cannabimimetic activity including those common to both the cannabinoid and A A I 
compounds. The map also shows those pharmacophoric elements that are specific for 
each compound, such as a lipophilic receptor site near the benzene ring of the AAIs 
and a hydrophilic receptor site next to the C9 hydroxyl of the cannabinoids. 

Inspection of our proposed C B i cannabinoid receptor map reveals that 
WIN55212-2 could be accommodated inside the binding site in either the C and Z 
models. Both conformations of WIN55212-2 seem capable satisfying those 
interactions with the receptor deemed necessary for tight binding. In fact, the 
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Figure 6. C o M F A steric maps (sterically favored regions in green and sterically 
disfavored regions in yellow) and electrostatic maps (positive charge favored in 
blue and negative charge favored in red) of the Z and C superimposition models. 
CP55244 and WIN55212-2 are colored in orange and by atom type. CP55244 is 
colored by atom type while WIN55212-2 is colored in purple (6a: Z model) and 
in orange (6b: C model). 

(Figure is printed in color in color insert.) 
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Table HI. Observed versus CoMFA-predicted pKj values for the test set 
compounds. 

Compounds pK^ observed p K i . predicted 
Z model C model 

AAIs 
8 -1.96 -2.30 -1.83 
12 -1.03 -0.23 -0.71 

Cannabinoids 
16 -2.51 -1.83 -1.86 
17 -1.88 -1.38 -1.51 
20 0.08 -0.84 -1.08 
21 -0.88 -1.26 -1.35 
24 -0.32 -0.20 -0.37 
25 -0.31 -0.19 -0.34 
27 -1.95 -0.51 -0.18 
28 -0.41 0.12 0.18 
29 -1.15 -0.34 -0.17 
30 -1.16 -0.37 -0.30 
31 -0.75 -0.40 -0.27 
32 0.86 -0.05 -0.17 

(CP55940) 
33 -0.09 -0.17 -0.20 
34 -0.52 0.01 -0.21 
35 -2.08 -0.67 -0.27 
37 -1.01 -0.33 -0.34 
39 -0.50 -0.14 -0.33 
40 -0.49 -0.23 -0.48 
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region of the receptor binding site in contact with the C and D rings of the 
cannabinoids and with the indole and N l side chain of the A A I s appears to possess 
the proper distribution of hydrophilic and lipophilic sites with respect to the C6-C7 
axis of the cannabinoids and the C3-C(carbonyl) of the A A I s (i.e., complementary 
hydrophilic-lipophilic sites on top left and top right of Figure 7). So either 
conformation of WIN55212-2 could function accordingly. 

Why do cannabinoids without the phenolic hydroxyl still retain potency? In a 
recent study, Huffman et al. (22) examined certain cannabinoids that exhibit strong 
binding affinity for the C B i cannabinoid receptor even though the C I hydroxyl 
group is missing. This finding conflicts with the extensive body of S A R data on 
the cannabinoids (75, 26, 29). Nevertheless, Huffman and his coworkers explained 
the exceptionally high potency of these cannabinoids by proposing that the C B i 
cannabinoid receptor forms a hydrogen bond with the C9 hydroxyl group in place 
of the C I hydroxyl group. Melv in et al. (70) also observed the retention of in vivo 
biological activity for a series of CP-55940 analogues in which the phenolic C I 
hydroxyl group is missing. These latter workers hypothesized that the 
hydroxypropyl group on the C-ring side chain of CP55940 (32) compensates for the 
reduced binding affinity that would be expected from the loss of the phenolic 
hydroxyl group. 

Based on recent molecular modeling studies of the same cannabinoids 
examined by Huffman et. al. (22), we now propose that the pyran O atom (e.g., 0 5 
in A 9 - T H C , Figure 1) or the O atom in the C-ring side chain of the AC-bicycl ic 
cannabinoids (e.g., CP55940) could mimic the C I hydroxyl group by occupying the 
same receptor binding site. In fact, rotation of the cannabinoid molecule about the 
C3 side chain would align these oxygen atoms with the position believed to be 
occupied by the phenolic C I hydroxyl inside the receptor binding site. This 
argument would imply that the lipophilic C3 side chain and the C I hydroxyl group 
(or its counterpart), but not the C9 substituent, are indeed essential for activity. As 
suggested by our Z and C models, no significant difference in the interaction with 
the C B i cannabinoid receptor was found by rotating about the torsion angle 
ool(C2=C3-C=0) of WIN55212-2. This operation is tantamount to rotation about 
the C3 side chain in the cannabinoids. A similar concept was proposed by Thomas 
et al. (30) in a recent study of the pharmacophore of anandamides in the relation to 
the cannabinoids, in which the pyran oxygen of the B ring was selected as a 
pharmacophoric element. A n interesting test of our hypothesis would be to 
measure the binding potency of cannabinoids that lacked both the C I phenolic 
hydroxyl group and any oxygen atom capable of mimicking its functionality. We 
would predict poor binding affinity for such compounds. 
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Figure 7. Putative pharmacophoric model of the C B i cannabinoid receptor 
showing possible interactions with both cannabinoid and A A I agonists (Z 
conformation). 
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Chapter 12 

Structure-Based Design of Novel Conformationally 
Restricted HIV Protease Inhibitors 

B. G . Rao, C . T. Baker, J. T . Court, D. D. Deininger, J. P. Griffith, E. E. Kim, 
J . L. Kim, B. Li, S. Pazhanisamy, F. G . Salituro, W. C . Schairer, and R. D. Tung 

Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA 02139 

In our efforts to discover a new generation of HIV protease inhibitors, 
which are structurally distinct and have minimal cross resistance to our 
current clinical candidate, amprenavir (VX-478), we designed a set of 
potent compounds bearing a novel backbone structure. Structural and 
modeling analysis of initial leads showed that these inhibitors bind in a 
strained conformation. We obtained dramatic improvement in binding 
by relieving the backbone conformational strain of the inhibitor. In this 
report, we will present our structure-based design approaches as well 
as the enzymatic results on these novel and highly potent inhibitors. 

HIV-1 protease inhibitors (Pis) have revolutionized treatment o f individuals with H I V 
and A I D S (/). Four Pis are already on the market and a fifth PI, amprenavir (with 
the chemical name of (3S)-tetrahydro-3-furyl N-((lS,2R)-3-(4-amino-N-
isobutylbenzenesulfonamido)-l-benzyl-2-hydroxypropyl) carbamate, also formerly 
known as V X - 4 7 8 and 141W94) is undergoing advanced phase III clinical trials (2). 
amprenavir is a small molecular weight (506 Da), potent ( K i = 0.6 n M ; IC90 = 40 
nM), and synthetically accessible H I V protease inhibitor that emerged from a focused 
application o f structure-based design approaches along in coordination with the 
disciplines of medicinal chemistry and pharmacology (3,4). The chemical structure o f 
amprenavir is shown in Figure 1. In spite o f the availability o f potent regimens o f Pis 
in combination with reverse transcriptase inhibitors (RTIs), a cure is not in sight and 
patients may have to be on these drug regimens for long time. Additionally, the 
currently available drug regimens are not well-tolerated by many patients and are very 
difficult to comply with. Related to these issues is the problem of drug resistance, 
which is a very compelling and immediate problem, since it can directly compromise 
the therapeutic efficacy of a given treatment regimen. Therefore, there is a need to 
design a new generation of Pis, which are more potent, easy to take and are not cross-
resistant to currently used Pis. Partaledis et al. (5) had shown using cell culture 
passage experiments that amprenavir is resistant to HIV-1 protease with a unique set 
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of mutations at L I OF, M46I, I47V and I50V. It has also been shown that I50V is 
absolutely necessary for resistance against amprenavir by in cellular and enzymatic 
assays (6). We have further characterized the biophysical basis o f the resistance of 
these mutants by X-ray crystal structure and computational methods (7). The results 
of this analysis is that the mutation of He to V a l at residue 50 causes loss in 
hydrophobic interactions with amprenavir; mainly the loss o f interaction between 
the terminnal (CD1) methyl group of 150 and the P2' aryl sulfonamide group o f the 
inhibitor contributes most to the loss o f binding. Based on these results, we have 
utilized the following four design concepts for the design o f next generation inhibitors: 
(a) Maintain strong interactions with the catalytic aspartates, (b) Maintain strong flap 
water interactions, (c) Space out P i and P i ' branching, so that inhibitors w i l l have less 
hydrophobic contact with the centrally located 150 and 184 side-chains, (d) Minimize 
interactions o f the P2/P2' groups with 150/150' side-chains. 

Linear Carbamate based Inhibitors 

The compound A in Figure 2 is a close analog of amprenavir with a K i of < 0.1 n M . 
The shifting o f P i benzyl from the C a to the P i amide nitrogen spaces out the P i and 
P i ' branching. Also , such a compound is expected to maintain strong interactions 
with the catalytic dyad (D25 and D25') and with the flap water. Therefore, the new 
compound B satisfies the first three design principles stated earlier. This compound 
showed good activity ( K i = 600 nM) , but it is much less potent than the parent 
compound. A preliminary modeling study (see modeling details in the next section) of 
this compound suggested that the benzyl group is too short to fi l l the P i pocket. The 
substitution o f P i benzyl with phenethyl lead to increased potency (Compound B l , 
K i = 40 nM) . Also , this compound is more potent than its diastereomer B2 ( K i = 170 
nM) , suggesting that the preferred configuration of the central hydroxyl is the same as 
the parent compound. The chemical structures of these two compounds are shown in 
Figure 3. However, the best o f these compounds is still > 400-fold weaker than the 
parent compound A . The new inhibitors are expected to be weaker due to two 
obvious reasons: (a) loss o f the hydrogen bond interaction with G27 carbonyl o f the 
enzyme, since the P i amide has no hydrogen bond donor, and (b) added flexibility of 
the main-chain and longer P i side-chain. But these factors alone are not expected to 
account for the >400 fold loss in binding. 

Modeling and Structural Analysis of Linear Carbamates 

Modeling. In order to understand the weaker binding o f the linear carbamate 
inhibitors, we modeled compound B l in the active site o f HIV-1 protease. The crystal 
structure of compound A complexed with HIV-1 protease (E. E . K i m , unpublished 
results) was used for modeling the bound conformation of compound B l . The 
program Q U A N T A (Version 4.0b, Molecular Simulations Inc., Burlington, M A , 
1992) was used for model building. Energy minimization was carried out with 
C H A R M M force field within Q U A N T A program. A s the prime-side of compounds 
A and B l are common, the bound conformation o f A in the crystal structure was 
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Figure 1. Chemical structure of amprenavir (VX-478) . 

Compound A I — A 

Figure 2. Chemical structures of compound A (a close analog of amprenavir, 
previously described as VB-11,328 in reference 6) and compound B (the new 
carbamate inhibitor, derived from compound A by shifting the P i benzyl from 
Coc position to the amide N of the same residue). 
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Figure 3. The two stereoisomers (Compound B l and Compound B2) of a 
linear carbamate inhibitor with Phenethyl side-chain at P i . 
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adopted for compound B l . The phenethyl and the T H F groups on the non-prime side 
o f compound B l was modeled into the S i and S2 pockets, respectively, by 
manipulating the main-chain and side-chain torsions. This model was energy 
minimized using two different approaches. In the first approach, the enzyme 
coordinates and the flap water were held fixed, and all atoms of the inhibitor were 
minimized first by steepest descents method for 200 steps, followed by 1000 steps 
of Adopted Basis Newton Raphson method in Q U A N T A . In the second approach, 
the enzyme coordinates were fixed, but flap water and inhibitor were allowed to move 
during minimization with a distance constraint between flap water and the ?2 
carbonyl to mimic a hydrogen bond. The two step minimization process was applied 
in this case also. The two approaches resulted in two energetically similar models. 

The two models, superimposed with the parent compound A are shown Figures 4 
and 5, respectively. Firstly, it may be noted that the compound B l does not make 
hydrogen bond with G27 carbonyl o f the enzyme in either models and it has two 
additional rotatable bonds. In model 1, the T H F group overlays quite well with the 
same group of compound A , but the aromatic ring of the P i group is pushed out o f 
the pocket. In the second model, the P i ring is closer to the same group of compound 
A , but the T H F groups do not overlap as well . Further, the P2 carbonyl in model 1 is 
not oriented to make the flap water interaction, whereas it was forced to make flap 
water interaction in the second model. In either case, the inhibitor is likely to loose 
significant binding due to (a) non-optimal interactions o f P i and P2 groups, (b) weak 
flap water interactions, (c) lack o f interaction with G27 carbonyl group o f the enzyme 
and (d) addition o f two rotatable bonds. This analysis o f the models is consistent with 
the higher K i for compound B l . However, the modifications o f these inhibitors 
suggested from these two models yielded only moderate improvements in binding 
(results not shown). 

Structural Analysis . In view o f these difficulties in understanding this series o f 
compounds by modeling, we attempted crystallization o f several potent compounds 
in this linear carbamate series. The crystal structures described in this paper were 
obtained by the following procedure: Purified wild-type protease was refolded at 5 ° 
C by rapid dilution from 7 M urea, into a buffer containing 25 m M sodium formate, 
50 m M D T T and a 5-fold molar excess o f inhibitor. The complex was concentrated 
and washed extensively in 15 m M sodium acetate, 5 m M D T T buffer (pH 5.4). 
Hexagonal rod shaped crystals grew at room temperature in about a week by vapor 
diffusion against an ammonium sulfate reservoir as described previously (3), in space 
group P 6 i . A l l data were collected at room temperature from one crystal each o f the 
various complexes, using a Rigaku R-axis l i e image plate area detector (Molecular 
Structure Co., Woodlands, T X ) . In all cases, all measured reflections beyond 8.0 A 
resolution were included in the structure refinement, which was carried out using X -
P L O R (#). The complex structures were refined using the slow-cool algorithm with 
starting coordinates from an isomorphous structure o f HIV-1 protease in complex 
with V X - 4 7 8 (3). The program Q U A N T A was used for model building. 

The first crystal structure obtained in this series o f compounds complexed with 
HIV-1 protease is o f VB-13,674 ( K i = 17 n M ) , which is a close analog of compound 
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Figure 4. A stereo diagram of the first model of compound B1 (thick line) 
overlapped with the crystal structure of compound A (thin line) in the ac
tive site of HIV-1 protease. 

Figure 5. A stereo diagram of the second model of compound B l (thick 
line) overlapped with the crystal structure of compound A (thin line) in the 
active site of HIV-1 protease. 
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B l . VB-13,674 has pyridyl methyl carbamate at ?2 instead o f tetrahydrofuranyl 
carbamate in compound B l . The electron density of the inhibitor at 2.2 A resolution 
is shown in Figure 6. A comparison of this structure with the structure of the parent 
compound shows that these two structures overlap quite wel l (Figure 7). 
Surprisingly, the P i group occupies almost the same position as the P i group of 
compound A and also maintains the flap water interactions. On both these counts, the 
two models are in disagreement with the crystal structure. Hence, it was not at once 
clear from the structure the reasons for weaker binding of the linear carbamate based 
inhibitors with HIV-1 protease. Further analysis of the structure showed that the ?2-
? \ main-chain o f the inhibitor is quite distorted in the crystal structure: The Pl-P2 
amide bond is twisted from planarity by about 35 degrees and the N - C - C - O H torsion 
is in an eclipsed conformation (Figure 7). These two factors in addition to the loss of 
hydrogen bond o f the inhibitor with G27 carbonyl appear to be responsible for >400 
fold loss in binding. 

A s models maintained the low energy conformation of the two bonds, they did 
not predict the crystal structure conformation. The crystal structure revealed that the 
penalty for distortion of the main-chain is less than the gain in binding due to 
interactions with the flap water and the hydrophobic residues in the S i pocket. This 
reality is obviously not captured by the modeled structures, reflecting the deficiency 
of current force fields. This result, therefore, suggests that we have to be mindful of 
such exceptions while using the docking and K i prediction algorithms using current 
force fields. 

Design of C y c l i c Lactam-based Inhibitors 

More importantly for this study, these structural and modeling results lead us to new 
approaches in the modifications o f these inhibitors that would minimize the main 
chain distortions to gain binding. One of these approaches is the design o f cyclic 
lactams: 

A close examination of the crystal structure o f VB-13,674 showed that the 
carbamate oxygen of the ?2 group and the C « methelene group o f the P i side-chain 
are close in space. This suggested that these two positions can be cyclized into a ring, 
thereby correct the amide distortion and decrease the flexibility o f the main-chain at 
the same time. We modeled both 5- and 6-membered ring systems, as lactams, cyclic 
carbamates and cyclic ureas. A l l the cyclic models were energy minimized in the active 
site of HIV-1 protease using the procedures described earlier. O f all the models, 5-
membered lactam based inhibitors looked best in terms of both conformations and 
energetics. The model o f a 5-membered lactam based inhibitor, minimized in the 
active site o f the enzyme, is overlapped with the crystal structure of VB-13,674 in 
Figure 8. It is clear that the model overlays very wel l with the crystal structure: the 
backbone is not distorted, its carbonyl maintains flap water interaction and it offers 
possibilities for filling the S2 side different substituents on the ring. 

The first compound synthesized with a cyclic scaffold is, however, a cyclic 
carbamate C I (Figure9). This compound has a K i o f 1.2 u\M, and is as potent as the 
corresponding linear inhibitor C2 ( K i = 1.6 p M ) (Figure 9). These results show that 
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Figure 6. Diagram of the 2|Fo| - |Fc| electron density around VB-13,674, a close 
analog of compound B 1 . 
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Figure 7. A stero diagram of the overlap o f the crystal structures o f VB-13,674 
(thick line) and compound A (thin line). 

Figure 8. A stereo diagram o f the overlap of the model of a cyclic carbamate 
(thin line), with the crystal structures of VB-13,674 (thick line). 
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Compound C I 

° o 

- 0 C H 3 

Compound C 2 

OCH3 

Figure 9. Chemical structures of a cyclic carbamate inhibitor, C I and the 
corresponding linear analog, C2. 

Figure 10. The 5-membered cyclic carbamates with different ?2 side-chains. 
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novel scaffolding at the P i and ?2 lead to compounds with comparable or better 
potency than the linear carbamate inhibitors. The low potency of the two molecules is 
due to lack of any ?2 interactions. A s this cyclic carbamate scaffold does not provide 
any possibility to fill the S2 pocket, this series was not perused further. 

The 5-membered lactams were elaborated with different P2 side-chains, as shown 
in Figure 10. The K i values of these compounds are given in Table I. The compound 

Table I. K i values of cyclic lactam based inhibitors illustrated in Figure 10. 

Name R l R2 K i (nM) 
D l H H 550 
D2 M e H 130 
D3 H M e 60 
D4 M e M e 115 
D5 H A l l y l 9 
D6 H Benzyl 0.6 

D l with only hydrogens at R l and R2 has a K i o f 550 n M . This compound is about 
2-fold better in binding than compound C I ( K i = 1.2 uM) . When R l or R2 is methyl, 
binding improved further by 4-9 fold. It is also clear that the methyl substituent (R2) 
trans to P i benzyl group offers bigger improvement in binding than the methyl at R l , 
cis to the P i benzyl group. Further elaboration of R2 methyl to al lyl jumped the 
binding by more than 10 fold in compound D5 with K i = 9 n M . When allyl is 
substituted with benzyl at R2, the binding improved even more dramatically by about 
15 fold in compound D6 with K i = 0.6 n M . This compound is as potent as 
amprenavir in terms o f enzymatic inhibition. The crystal structure o f D6 in the active 
site o f HIV-1 protease is shown in Figure 11. It may be seen from the structure that it 
fills all the four subsites and maintains flap water interaction without any distortion 
o f the main-chain conformation. 

However, compound D6, which is novel and potent, does not satisfy one of our 
gaols o f maintaining high level o f potency against 150V mutant of HIV-1 protease. In 
fact, the K i ' s o f compound D6 against I50V and M46I/I47V/I50V mutants are 43 n M 
and 135 n M , respectively. This reduction in binding of this compound is as high as 
that o f V X - 4 7 8 against these two mutants (6). A s our structural analysis o f the 
mutants suggested (7) the reduction o f binding results from the interactions of the P2' 
group with 150 side-chain. Hence, , the K i results against mutants are not surprising as 
the P2f part of the new inhibitor D 6 is similar to that of V X - 4 7 8 . 

Conclusions 

The structural data and modeling has been utilized successfully to discover HIV-1 
protease inhibitors with novel scaffolds with P i and P2 substituents. These 
compounds are very potent; the best one described has a K i o f 0.6 n M . There are a lot 
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Figure 11. Crystal structure o f compound D6 in the active site of HIV-1 
protease. The inhibitor is shown in thick sticks. A l l atoms are colored according 
to the atom-types (C: green, O: red, N : blue, S: yellow). 
(Figure is printed in color in color insert.) 
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of examples of inhibitor optimization published in the literature which show 
improvement in binding due to addition/optimization o f hydrophobic, hydrogen 
bonding or electrostatic interactions. The present work is one o f the very few studies 
and perhaps the first one to show substantial increase in binding accompanying the 
improvement in inhibitor conformation. 

We have discovered several more potent inhibitors in this series and related 
analogs with different P1-P2 scaffolds during the first phase o f our second generation 
HIV-1 protease inhibitor discovery program carried out solely at Vertex 
Pharmaceuticals. However, al l these compounds have the same prime side 
substituents at P i ' and P2 ' sites, much similar to amprenavir. A s one o f the goals of 
the program is to discover inhibitor which are chemically distinct from amprenavir 
series, the second phase o f this program focused on changing the prime-side of these 
new inhibitors. The second phase o f the program is being carried out in collaboration 
with Glaxo Wellcome and the newer compounds w i l l be described elsewhere. 
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Chapter 13 

"New Tricks for an Old Dog": Development and 
Application of Novel QSAR Methods for Rational 
Design of Combinatorial Chemical Libraries and 

Database Mining 
A . Tropsha, S. J. Cho , and W . Zheng 

The Laboratory for Molecula r Model ing , Division of Medic ina l Chemistry 
and Natura l Products, School of Pharmacy, University of Nor th Caro l ina , 

Chapel Hill, Nor th Caro l ina 27599 

We discuss the development of novel automated variable selection QSAR methods in the 
context of their application to rational design of targeted combinatorial chemical libraries. 
The two QSAR methods developed in this laboratory include Genetic Algorithm - Partial 
Least Squares (GA-PLS) and K-Nearest Neighbors (KNN). Both methods employ 
multiple topological descriptors of chemical structures and use stochastic optimization 
algorithms to achieve robust QSAR models, which are characterized by the highest value 
of cross-validated R2 (q2). The GA-PLS method uses a combination of genetic 
algorithms (GA) and PLS to evolve an initial population of the QSAR equations to the 
final population with the highest average q2. The KNN-QSAR method formally employs 
the active analog principle and predicts the activity of a compound as the average activity 
of K most chemically similar compounds using the optimized subset of descriptors to 
characterize the similarity. Both QSAR methods can be used to search for bioactive 
compounds in the virtual chemical libraries or chemical databases on the basis of either 
(i) their (high) activity predicted from the QSAR model, or (ii) their similarity to a probe 
(lead molecule) evaluated using only variables selected by the QSAR model. 

Rapid development of combinatorial chemistry and high throughput screening in recent years has 
provided a powerful alternative to more traditional approaches to lead generation and 
optimization. In traditional medicinal chemistry, these processes frequently involve the 
purification and identification of bioactive ingredients of natural, marine, or fermentation 
products or random screening of synthetic compounds. This is often followed by a series of 
painstaking chemical modification or total synthesis of promising lead compounds, which are 
tested in adequate bioassays. On the contrary, combinatorial chemistry involves systematic 
assembly of a set of "building blocks" to generate a large library of chemically different 
molecules which are screened simultaneously in various bioassays (1,2). In the case of targeted 
library design, the lead identification and optimization then becomes generating libraries with 
structurally diverse compounds, which are similar to a lead compound; the underlying 

198 © 1999 American Chemical Society 
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assumption is that structurally similar compounds should exhibit similar biological activities. 
Conversely, structurally dissimilar compounds should exhibit very diverse biological activity 
profiles; thus the goal of the diverse library design is to generate libraries with maximum 
chemical diversity of the constituent compounds (3). 

In many practical cases, the exhaustive synthesis and evaluation of combinatorial 
libraries becomes prohibitively expensive, time consuming, or redundant (4). Recently, we have 
initiated the development of computational approaches aimed at rational design of combinatorial 
libraries for both targeted and diverse screening (5,6). Obviously, using all available 
experimental information about the biological target or pharmacological compounds capable to 
interact with the target can significantly enhance the rational design of targeted chemical 
libraries. In many cases, the number of compounds with known biological activity is sufficiently 
large to develop a viable QSAR model for such dataset. Thus, a pre-constructed QSAR model 
can be used as a means of selecting virtual library compounds (or actual compounds from 
existing databases) with high predicted biological activity. Alternatively, i f a variable selection 
method has been employed in developing a QSAR model, the use of only selected variables can 
improve the performance of the rational library design or databases mining methods based on the 
similarity to a probe. 

In this paper we describe the development and application of two fast, automated algorithms for 
QSAR based on the principles of variable selection and stochastic optimization. We show that 
the resulting QSAR models can be effectively used in rational targeted library design and 
database mining. We conclude that combinatorial chemistry creates previously unforeseen 
challenges for the field of QSAR analysis. 

Methods 

General Computational Details. S Y B Y L molecular modeling package (7) was used to 
generate chemical structures and convert them to SMILES (8) notation. MolconnX program (9) 
was used to generate topological indices for all datasets used in this study. A l l calculations were 
performed on SGI Indigo2 workstations. 

GA-PLS Method. The algorithm of the GA-PLS method (10) was implemented as follows. 
Step 1. The MolconnX program (9) was applied to generate descriptor variables (460 
topological indices) automatically for each data set represented in the SMILES notation. A l l 
atom-id dependent descriptors (150 descriptors) and descriptors with zero variance were 
removed. Step 2. A n initial population of 100 different random combinations of subsets of these 
descriptors (parents) was generated as follows. Each parent was described by a string of random 
binary numbers (i.e. one or zero), with the length (total number of digits) equal to the total 
number of descriptors selected for each dataset. The value of one in the string implied that the 
corresponding descriptor was included for the parent, and the value of zero meant that the 
descriptor was excluded. Step 3. For every combination of descriptors (i.e., every parent), a 
QSAR equation was generated for the training data set using the PLS algorithm (11). Thus, for 
each parent a q 2 value was obtained. This value was further used to calculate the following 
fitness function: [l-(n-l)(l-q2)/(n-c)L where q 2 is the cross-validated R 2 , n is the number of 
compounds, and c is the optimal number of components from PLS analysis. This fitness 
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function was used to guide G A . [See our earlier paper (10) for more discussion on the selection 
of the fitting function.] Step 4. Two parents were selected randomly and subjected to a crossover 
(i.e., the exchange of the equal length substrings), which produced two offsprings. Each 
offspring was subjected to a random single-point mutation, i.e. randomly selected one (or zero) 
was changed to zero (or one) and the fitness of each offspring was evaluated as described above 
(cf. Step 3). Step 5. If the resulting offsprings were characterized by a higher value of the fitness 
function, then they replaced parents, otherwise, the parents were kept. Step 6. Steps 3-5 were 
repeated until a predefined convergence criterion was achieved. As the convergence criterion we 
used the difference between the maximum and minimum values of the fitness function. 
Calculations were terminated when this difference was less than 0.02. 

In summary, each parent in this method represents a QSAR equation with randomly 
chosen variables, and the purpose of the calculation is to evolve from the initial population of the 
QSAR equations to the population with the highest average value of the fitness function. In the 
course of the GA-PLS process, the initial number of members of the population (100) is 
maintained while the average value of the fitness function for the whole population converges to 
a high number. 

Q S A R based on the K N N principle. The general K N N technique is a conceptually simple, 
nonlinear approach to pattern recognition problems. In this method, an unknown pattern is 
classified according to the majority of the class labels of its K nearest neighbors of the training 
set in the descriptor space. Two sets of descriptors have been utilized: molecular connectivity 
indices (MCI) as discussed above and atom pairs descriptors (AP) derived on the basis of the 
approach initiated by Carhart et al (12). 

The assumptions underlying KNN-QSAR method are as follows. First, structurally 
similar compounds should have similar biological activities, and the activity of a compound can 
be predicted (or estimated) simply as the average of the activities of similar compounds. 
Secondly, the perception of structural similarity is relative and should always be considered in 
the context of a particular biological target. Since the physicochemical characteristics of receptor 
binding site vary from one target to another, the structural features that can best explain the 
observed biological similarities between compounds are different for different biological end-
points. These critical structural features are defined in this work as the topological 
pharmacophore (TP) for the underlying biological activity. Thus, one of the tasks of building a 
KNN-QSAR model is to identify the best TP. This is achieved by the "bioactivity driven" 
variable selection, i.e. by selecting a subset of molecular descriptors that afford a highly 
predictive KNN-QSAR model. Since the number of all possible combinations of descriptors is 
huge, an exhaustive search of these combinations is not possible. Thus, a stochastic optimization 
algorithm, i.e., simulated annealing (SA) has been adopted for the efficient sampling of 
combinatorial space. Figure 1 shows the overall flow chart of the KNN-QSAR method, which 
involves the following steps. 
(1) Select a subset of n descriptors randomly (« is a number between 1 and the total number of 

available descriptors) as a hypothetical topological pharmacophore (HTP). 
(2) Validate this HTP by a standard cross-validation procedure, which generates the cross-

validated R 2 (or q2) value for the KNN-QSAR model. The standard leave-one-out procedure 
has been implemented as follows, (i) Eliminate a compound in the training set. (ii) Calculate 
the activity of the eliminated compound, which is treated as an unknown, as the average 
activity of the K most similar compounds found in the remaining molecules (K is set to 1 
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Randomly Select a Subset o f Descriptors 
(a hypothetical topological pharmacophore) 

CO 

1 
Drop a compound 

J 
Predict the activity o f the eliminated compound 

as the average activity o f the k 
most similar compounds 

T 
Calculate the predictive ability (q 2 ) o f the "mode l " 

Select the best Q S A R model 

Figure 1. Flow chart of the algorithm for the construction of a KNN-QSAR model.  O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
01

3

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



202 

initially). The similarities between compounds are calculated using only the selected 
descriptors (i.e. the current trial HTP) instead of the whole set of descriptors, (iii) Repeat this 
procedure until every compound in the training set has been eliminated and predicted once. 

(iv). Calculate the cross-validated R 2 (or q2) value using Eq. 1, where yi and yi are the 
actual activity and the predicted activity of the i-th compound, respectively; and v is the 
average activity of all the compounds in the training set. Both summations are over all the 
compounds in the training set. 

Since the calculation of pair-wise molecular similarities, and hence the predictions, are 
based upon the current HTP, the derived q 2 value is indicative of the predictive power of the 
current KNN-QSAR model, (v) Repeat calculations for K = 2, 3, 4 n. The upper limit of 
K is the total number of compounds in the dataset; however, the best value was found 
empirically to lie between 1 and 5. The K that leads to the best q 2 value is chosen for the 
current KNN-QSAR model. 

(3) Repeat steps (1) - (2), i.e., the procedure of generating trial HTP's and calculating 
corresponding q 2 values. The goal is to find the best HTP that maximizes the q 2 value of the 
corresponding KNN-QSAR model. This process is driven by a generalized simulated 
annealing using q 2 as the objective function. 

Library Design Using Pre-constructed Q S A R Models. Figure 2 shows the schematic diagram 
of our approach called Focus-2D (5) to the targeted pentapeptide combinatorial library design. 
The algorithm includes the description, evaluation, and optimization steps. Pentapeptides are 
assembled from building blocks B i , B2, ... B„ (i.e., amino acids of 20 natural types). In order to 
identify potentially active compounds in the virtual library, Focus-2D employs stochastic 
optimization methods such as SA (13,14) and G A (15,16,17). The latter algorithm was 
implemented in this paper as follows. 

Initially, a population of 100 peptides is randomly generated and encoded using 
topological indices or amino acid dependent physico-chemical descriptors. The fitness of each 
peptide is evaluated either by its chemical similarity to a biologically active probe or by its 
biological activity predicted from a pre-constructed QSAR equation (cf. Figure 2). Two parent 
peptides are chosen using the roulette wheel selection method (i. e., high fitting parents are more 
likely to be selected). Two offspring peptides are generated by a crossover (i. e., two randomly 
chosen peptides exchange their fragments) and mutations (i. e., a randomly chosen amino acid in 
an offspring is changed to any of the 19 remaining natural amino acids). The fitness of the 
offspring peptides is then evaluated and compared with those of the parent peptides, and two 
lowest scoring peptides are eliminated. This process is repeated for 2000 times to evolve the 
population. Finally, the frequency of each building block in the final population is calculated, 
and those with the highest frequency are proposed for the combinatorial synthesis of targeted 
library. 

Database Mining. Similar procedure can be employed for database mining except that the 
actual rather than the virtual compounds are described in the first step. The protocol for the 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
01

3

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



203 

B, B, B. B„ 

B iB jB kB 1Bm 

GA, SA. 

Evaluate 

=> Describe 

Similarity to 
lead compound (-s) 
or Q S A R prediction 

Select Analyze 

Figure 2. Flow chart of the FOCUS-2D algorithm for targeted library design. 
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similarity search is given in Figure 3. First, a similarity probe is chosen and both the probe and 
all compounds in the database are described using molecular connectivity indices. Then, the 
similarity of this probe molecule to every molecule in the database is calculated as the value of 
Euclidean distance between the two molecules in multidimensional descriptor space (cf. ref. 5) 
using either the whole set of descriptors or KNN-QSAR selected descriptors. A l l compounds in 
the database are sorted in the order of descending similarity to the probe molecule, and a certain 
number of the top ranking compounds is selected. The hit rate is evaluated as the percentage of 
known active molecules found among the selected compounds. 

Results and Discussion 

The main objective of this paper was to illustrate the principles of using QSAR models for 
database mining and rational design of targeted chemical libraries. Thus, we first show the 
results of QSAR modeling for several datasets using our original variable selection methods (i.e., 
GA-PLS and KNN) and then analyze the use of these models for selected examples of library 
design and database mining. 

Targeted Bradykinin Library Design Using A Pre-Constructed QSAR Equation. We have 
applied our methodology to the rational design of a targeted library with bradykinin (BK) 
potentiating activity. Pentapeptide analogs of B K have been described either by topological 
indices or by a combination of physico-chemical descriptors, generated for each amino acid. The 
topological indices of virtual pentapeptides were calculated using the Molconn-X program (9). 

We have also employed several amino acid based descriptors, including Z i , Z 2 , and Z3 
descriptors (related to hydrophilicity, bulk, and electronic properties of individual amino acids, 
respectively) reported by Hellberg et al (18) and isotropic surface area (ISA) and electronic 
charge index (ECI) descriptors reported by Collantes and Dunn (19). In this case, virtual 
pentapeptides were encoded in the form of a string of descriptor values. Each string consisted of 
15 descriptor values (five blocks of three descriptors per amino acid) when using Z descriptors or 
10 descriptor values (five blocks of two) when using ISA-ECI descriptors. The following two 
sections describe two key steps of library design: (i) development of the QSAR model and (ii) 
the use of this model as fitness function for the evaluation of virtual library compounds. 

Development of a QSAR Model 28 B K potentiating pentapeptides (18,20) were used as 
a training set to develop a QSAR equation that was employed to predict the bioactivity of virtual 
library peptides. The log relative activity index (RAI) values of bradykinin potentiating 
pentapeptides were used as dependent variables. The detailed description of the assay as well as 
the calculation of relative activity index values were described in the original publications (18, 
20). 

The two most active compounds, V E W A K and V K W A P , were excluded from the 
training set. The calculated log RAI values for the training set compounds compared favorably 
with the experimental data (data not shown). Although the activities of the two excluded 
peptides were underestimated (the experimental values of log RAI were 2.73 and 2.35 for 
V E W A K and V K W A P , respectively), the QSAR equations correctly predicted them to have 
activities higher than those of compounds in the training set. Thus, the log RAI values of 1.79, 
1.48, and 1.47 were obtained for V E W A K using ISA-ECI, Z1-Z2-Z3, and topological indices, 
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Figure 3. Flow chart of the algorithm for database mining, which is based on the 
similarity to a probe. 
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respectively, and the log RAI values of 1.80, 1.74, and 1.95 were obtained for V K W A P using 
ISA-ECI, Z1-Z2 -Z3, and topological indices as descriptors, respectively. 

The statistics obtained from the PLS regression analyses and the GA-PLS method is 
shown in Table I. In order to test the reliability of the prediction using pre-constructed QSAR 
equations with these descriptors, we incorporated the modified "degree of fit" condition. 
According to this condition, i f RSD of dependent variables of a virtual peptide is less than the 
RSD of the X matrix of the training set, the predicted values are considered to be reliable. If this 
condition is not met the log RAI of the virtual peptide is not predicted or set to a low log RAI 
number to avoid selecting it. The condition does not allow the Focus-2D program to over-
extrapolate. Since the number of peptides in the training set is very small compared to 
theoretical number of different pentapeptides (3.2 million), the extrapolation of QSAR 
relationship should be done very carefully in small increments, and the "degree of fit" condition 
implemented here allows us to do this. The RSD values of the X matrix of the training set of 
0.886, 0.818, and 0.195 were obtained for ISA-ECI, Z i - Z 2 - Z 3 , and topological indices 
description methods, respectively and used to test the reliability of the prediction (Table 1). 

Table I. Summary of the statistics for G A - P L S for 28 B K peptides. 
PLS GA-PLS 

ISA-ECf Zi-Z2-Zib Topological Indices0 # of crossovers 0 0 0 2000 10000 
# of compounds 28 28 28 28 28 
# of variables 10 15 160 45 23 
ONC r f 3 2 1 2 5 

0.725 0.633 0.367 0.533 0.845 
SDEP' 0.410 0.464 0.598 0.524 0.322 
Fitnessg 0.702 0.619 0.367 0.515 0.818 
RSD of the X 0.886 0.818 0.381 0.134 0.195 
matrix'' 
SDEE' 0.313 0.315 0.544 0.466 0.260 
R 2 0.840 0.831 0.476 0.630 0.899 
F values 42.020 61.355 23.575 21.289 38.984 

"ISA-ECI (n = 28, k = 3). *Zi -Z 2 -Z 3 (n = 28, k = 2). "Topological indices: (n = 28,k 
= 1) for 0 crossover; (n = 28, k = 2) for 2,000 crossovers; and (n = 28, k = 5) for 
10,000 crossovers. rfThe optimal number of components. *Cross-validated R 2 . 
^Standard error of prediction. Calculated as [1 - (n -1)(1 - #2)/(n - c)]. ''The residual 
SD of the X matrix. 'Standard error of estimate. 

Focus-2D Using Q S A R Equation. The results obtained with Focus-2D and a QSAR 
based prediction as the evaluation method, are shown in Figure 4 for Z1-Z2-Z3 descriptors. The 
populations before (Figure 4a) and after (Figure 4b) Focus-2D as well as the population after the 
exhaustive search (Figure 4c) are shown. The populations after Focus-2D and after the 
exhaustive search were obviously very similar to each other. With Z1-Z2-Z3 descriptors, Focus-
2D analysis selected amino acids E, I, K , L, M , Q, R, V , and W. Interestingly, these selected 
amino acids include most of those found in two most active pentapeptides, i.e. V E W A K and 
V K W A P . Furthermore, the actual spatial positions of these amino acids were correctly 
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Figure 4. FOCUS-2D using Z i - Z 2 - Z 3 description method and a QSAR equation: (a) 
initial population; (b) final population after FOCUS-2D; and (c) final population after 
the exhaustive search. 
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identified: the first and fourth positions for V ; the second and fifth positions for E; the third 
position for W; and the second and fifth positions for K. 

Database Mining Using the Similarity to a Probe. In order to demonstrate the effectiveness of 
the method, a KNN-QSAR analysis of a set of estrogen receptor ligands was performed using 
molecular connectivity indices (MCI). The usefulness of KNN-QSAR based similarity search 
was then demonstrated in a database mining experiment, where a known estrogen receptor ligand 
was chosen as a probe molecule and molecular similarity was calculated using either the whole 
set of MCI descriptors, or a subset of 60 KNN-QSAR selected MCI descriptors. 

Application of the KNN method to Estrogen Receptor Ligands. 58 estrogen receptor 
ligands were chosen as a comprehensive test case for the KNN-QSAR technique. This dataset 
was successfully analyzed earlier by Waller et al. (21) using Comparative Molecular Analysis 
(CoMFA) (22). 

In KNN-QSAR method, nvar (the number of descriptors to be selected) can be set to any 
value that is less than the total number of descriptors that are generated by a molecular 
description method. Since the optimum value of nvar is not known a priori, several runs are 
usually needed to examine the relationship between the predictive power of a model 
(characterized by the q 2 value) and the number of descriptors selected (nvar). Figure 5 shows this 
relationship when MCI was used to describe each of the estrogen receptor ligands. When the real 
activity values for estrogen receptor ligands were used in the KNN-QSAR analysis, the q 2 values 
were 0.77, 0.63 and 0.48 for the 10-descriptor model, 60-descriptor model, and 120-descriptor 
model, respectively. In order to show the robustness of KNN-QSAR analysis, one needs to 
demonstrate that no comparable q 2 values can be obtained when randomly shuffled activity 
values or randomly assigned activity values (but within the same range as the real activity) are 
used in the KNN-QSAR analysis. Figure 5 also shows the q 2 vs. nvar relationships when three 
randomly assigned activity values were used in the KNN-QSAR analysis. Overall, these q 2 

values are very low compared to those of the actual dataset. This suggests that the KNN-QSAR 
models obtained for the actual datasets are distinguishable from those for random datasets. One 
can also observe that the q 2 values decrease when the number of descriptors increases. On the 
surface, this may be counter-intuitive. The intuition may come from the fact that the more 
descriptors are used in multiple linear regression analysis, the higher regression coefficient is 
normally obtained. However, it should be kept in mind that the KNN-QSAR is not based on a 
regression method, but rather on the similarity principle. Theoretically, there should be no 
apparent trend in q 2 vs. nvar relationships, although in many practical situations, q 2 tends to 
decrease slightly when the number of descriptors increases. Conceivably, there should be one 
optimum number of descriptors, where either the q 2 is the highest or the separation between the 
q for the real dataset and those for random datasets is the largest. 

The plot of predicted vs. actual activity for a 10-descriptor model is shown in Figure 6. 
Apparently, the trend of the predicted values is similar to that of the real activity values. The 
results obtained in this work are better than those reported by Waller et al. (21) using CoMFA 
analysis in terms of the q 2 values (0.77 here vs. 0.59 obtained by Waller et al.) 

Database Mining Using Estrogen Receptor Ligands as Probe Molecules. The 
database for this search was constructed artificially by putting together several known QSAR 
datasets with different pharmacological activity. This database contained 358 molecules 
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-0.5 J 1 

Number of Descriptors 

Figure 5. The relationship between q 2 and the number of variables (nvar) for estrogen 
receptor ligands. MCI were used as molecular descriptors, nvar is the number of 
descriptors selected for the final KNN-QSAR model. The results for both actual 
estrogen dataset and three datasets with random activity values are shown. 

I _____ _4_J J 
Actual activity 

Figure 6. Predicted vs. actual activity obtained from a 10-descriptor KNN-QSAR 
model for estrogen receptor ligands using MCI as molecular descriptors. 

Figure 7. Comparison of the hit rates for known estrogen receptor ligands for ideal, 
random, or similarity based database mining using butylbenzylphthalate as a probe. 
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including 58 known estrogen ligands. Eight molecules were chosen arbitrarily from the known 
estrogen receptor ligands as the query molecules (or probes), one from each of the eight 
structural classes of these compounds described elsewhere (21). The protocol and the database 
for this similarity search experiment are described in Computational Details. The typical result of 
the similarity search is given in Figure 7, which shows the following four curves: (1) The curve 
of hit rates obtained in the ideal case, where every compound found among the top 58 structures 
is actually a known estrogen receptor ligand. This is the upper limit that anyone would like to 
reach. (2) The curve of hit rates obtained by a random search, i.e. by randomly selecting a certain 
number of compounds and then examining how many known estrogen receptor ligands are 
found. (3) The two curves of hit rates obtained from similarity searches based either upon the 
whole set of descriptors or upon the KNN-QSAR selected descriptors. 

Our results show that, in most cases the hit rates obtained by similarity search for the 
known estrogen receptor ligands are more than two times higher than what would be expected 
from a random search. This demonstrates the effectiveness of the similarity search strategy. As 
mentioned above, we have used eight different estrogen receptor ligands as probes (all data not 
shown). In five out of eight cases the hit rates obtained using only descriptors selected by K N N -
QSAR were better than those obtained using the whole set of descriptors (cf. Figure 7 as an 
example). It implies that the KNN-QSAR model has captured the critical structural features 
(descriptors) that are responsible for specific biological activities of the underlying compounds. 
In those three cases when the results obtained with KNN-QSAR selected descriptors were no 
better than those obtained using the whole set of descriptors, the probe molecules probably did 
not have many similar structures among known estrogen receptor ligands. 

Conclusions and Prospectus. 

One important aspect of any QSAR investigation is the potential application of the derived 
QSAR models. It is common to think that in the case of a 3D QSAR method such as CoMFA 
(22), the results should be used to predict the modifications of known compounds that may lead 
to more potent ligands. Such applications are not possible using GA-PLS or KNN-QSAR 
methods since the relationships between molecular descriptors used in these methods and the 
underlying chemical structures are not obvious. Thus, although these molecular descriptors can 
be calculated for any molecular structure, the prediction of molecular structure from descriptors 
is not straightforward i f at all possible. However, as we demonstrate in this report, both QSAR 
methods could be used, in a fairly direct manner, to search for biologically active molecules, 
either in existing databases (i.e., for database mining) or virtual chemical libraries (i.e., for 
targeted library design). In this paper, we illustrate two practical applications of QSAR models 
for such searches. First, the pre-constructed QSAR equation can be used to directly predict 
biological activity of sampled chemical structures, and the selection of actual or virtual 
compounds can be based on the (high) value of predicted biological activity. Second, the 
selection of active compounds can be based on their similarity to a known active probe (lead) 
molecule. We showed that this similarity searches using the topological pharmacophore derived 
from the QSAR model, are in general more efficient than using all available descriptors. We 
believe that the integration of QSAR and rational library design or database mining provides a 
new exciting avenue for the development and application of QSAR methods that should be 
further explored in the future. 
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Chapter 14 

Molecular Hologram QSAR 

Trevor W . Heritage and David R. Lowis 

Tripos Inc., 1699 S. Hanley Road, St. Louis, MO 63144 

QSAR techniques have proven to be extremely valuable in 
pharmaceutical research, particularly 3D-QSAR. However, the 
complexity of descriptor calculation, conformer generation, and 
structural alignment renders the use of this type of QSAR non-trivial. 
Furthermore, demands for analysis of large data sets such as those 
generated by combinatorial chemistry and high throughput screening 
have compounded this problem. Molecular Hologram QSAR 
(HQSAR) is a new technique that employs specialized fragment 
fingerprints (molecular holograms) as predictive variables of biological 
activity. By eliminating the need for molecular alignment, HQSAR 
models can be obtained more rapidly than other techniques, rendering 
them applicable to both small and large data sets. HQSAR models are 
comparable in predictive ability to those derived from 3D-QSAR 
techniques and can readily be extended to support chemical database 
searching. 

2 1 2 © 1999 American Chemical Society 
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Since the works of Hansch and Fujita 1, and Free and Wilson 2 demonstrated the successful 
application of theoretical and computational methods to understanding and predicting 
biological activity, there has been considerable progress in the development of molecular 
descriptors and chemometric techniques. The entire field of Quantitative Structure-
Activity Relationships (QSAR) has arisen, based upon the underlying assumption that the 
variations in biological activity within a series of molecules can be correlated with 
changes in measured or computed molecular features or properties o f those molecules. In 
particular, the development of 3D Q S A R techniques that attempt to correlate biological 
activity with the values of various types of molecular field, for example, steric, electronic, 
or hydrophobic has been of particular interest3 4 . 

The most popular method of 3D Q S A R in use today, Comparative Molecular Field 
Analysis 3 ( C o M F A ) , uses steric and electrostatic field values computed at the 
intersections of a three-dimensional grid that surrounds the molecules in the data set. 
Although numerous successes in the use of 3D Q S A R to predict biological activity have 
been reported, there remains the major limitation that the molecules in the data set must 
be mutually aligned based on some consistent rule or strategy5-6. Several approaches7"8-9 

to alleviate this problem have been attempted with only moderate success, and coupled 
with the conformational flexibility of the molecules in the data set, this problem remains 
the major barrier to 3D Q S A R . 

A s a consequence, there is considerable interest in the development of alternative 
descriptions of molecular structure that do not require the alignment of molecules, such as 
autocorrelation vectors 1 0, molecular moment analysis 1 1, vibrational eigenvalue analysis 1 2 

( E V A ) , and 3D W H I M descriptors1 3. In this chapter, we review a new descriptor of 
molecular structure, known as the Molecular Hologram, that is based solely on 2D 
connectivity information. As discussed later in this chapter, Molecular Holograms yield 
statistically robust Q S A R models that are comparable, in statistical terms, to those 
derived using 3D Q S A R techniques, with the key advantage that no 3D structure or 
molecular alignment is required. 

Molecu la r Hologram Q S A R Methodology 
Molecular Hologram Q S A R ( H Q S A R ) involves the identification of those substructural 
features (fragments) in sets of molecules that are relevant to biological activity. A key 
differentiator of this method relative to other fragment based methods such as Free-
Wilson 1 4 , or C A S E 1 3 analyses, is that the Molecular Holograms generated encode all 
possible fragments, including branched, cyclic, and overlapping fragments. Thus, each 
atom in a molecule w i l l occur in multiple fragments and therefore increment several bins 
in the Molecular Hologram. Unlike maximal common subgraph algorithms and the 
Stigmata 1 6 approach which seek structural commonalities, H Q S A R yields a predictive 
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relationship between substructural features in the data set and biological activity using the 
Partial Least Squares1 7 (PLS) technique. 

Molecu la r Hologram Generation. A Molecular Hologram is a linear array of integers 
containing counts of molecular fragments, and originates from the traditional binary 2D 
fingerprints employed in database searching and molecular diversity applications. The 
process of hologram generation is depicted in Figure 1. 

The input data set consists of the 2D chemical structures and the corresponding biological 
responses. The molecular structures are broken down into all possible linear, branched 
and cyclic combinations of connected atoms (fragments) containing between M and N 
atoms. Each unique fragment in the data set is assigned a pseudo-random, large positive 
integer value by means of a cyclic redundancy check ( C R C ) algorithm. Two key 
properties of the C R C algorithm are that: 

(i) . very few "collisions" between fragments are observed - that is, each and every 
unique fragment is assigned a unique integer value, 
(ii) . the integer value assigned to a particular fragment is always reproducible for 
that fragment - even between runs. 

Each of these integers is then "folded" (or hashed1 8) into a bin (or position) in an integer 
array of fixed length L (L is generally a prime number between 50 and 500). The 
occupancy values for each bin are then incremented according to the number of fragments 
hashing to their bin. Thus, all generated fragments are hashed into array bins in the range 
1 to L. This array is called a Molecular Hologram, and the associated bin occupancies are 
the descriptor variables. 

The hashing function is used to reduce the dimensionality of the Molecular Hologram 
descriptor, but leads to a phenomenon known as "fragment collision". During fragment 
generation, identical fragments always hash to the same bin (since they have the same 
C R C number), and the corresponding occupancy for that bin is incremented. However, 
since the hologram length is, in most cases, considerably smaller than the total number of 
unique fragments encountered in the data set, different unique fragments w i l l be hashed 
to the same bin, causing "collisions" between fragments. This is discussed further in the 
section on hologram length. 

Hologram Q S A R M o d e l Bu i ld ing . Computation of the Molecular Holograms for a data 
set of structures yields a data matrix (AT) of dimension R x L, where R is the number of 
compounds in the data set and L is the length of the Molecular Hologram. For Q S A R 
purposes, a matrix of target variables (biological activities) (Y) is also created. Standard 
P L S analysis is then applied to identify a set of orthogonal explanatory variables 
(components) that are linear combinations of the original L variables. Leave-one-out 
crossvalidation is applied to determine the number of components that yields an 
optimally predictive model. 
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Figure 1. Generation of Molecular Holograms. 
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Once an optimal model is identified, P L S yields a mathematical equation that relates the 
Molecular Hologram bin values to the corresponding biological activity of each 
compound in the data set. The form of this equation for the generated Q S A R model is 
shown by the following equation: 

L 

Activity , = C . + Z J C . C , 
/=l 

where xft is the occupancy value of the Molecular Hologram of compound i at position or 
bin /, ct is the coefficient for that bin derived from the P L S analysis, L is the length of the 
hologram, Activity• is the biological activity of compound i , and c0 is a constant. 

H Q S A R Parameters. A s is the case with all other Q S A R methods, careful selection of 
parameters is critical to the success of H Q S A R . The key parameters involved in the 
generation of molecular holograms are hologram length (L), fragment size (M and N), 
and parameters that control how different fragments distinguished - atoms, bonds, 
connections, hydrogens, and chirality. 

Hologram Length. The hologram length controls the number of bins in the 
hologram fingerprint. Since the hologram length is significantly less than the number of 
fragments in most compounds, alteration of this parameter causes the pattern of bin 
occupancies to change. The effect of this is to alter the distribution and frequency of 
fragment collisions. During H Q S A R analyses it is important to compare and contrast 
models generated at several different hologram lengths to ensure that the result observed 
is not merely an artifact of fragment collisions - lack of consistency in the P L S results at 
several lengths is a good indication that this phenomenon is occuring. The use of prime 
number hologram lengths ensures that different fragment collision patterns are observed 
at each length. 

Fragment Size. Fragment size controls the minimum (M) and maximum (N) 
number of atoms contained within any fragment. These parameters can be changed to 
bias the analysis toward smaller or larger fragments. 

Fragment Distinction. Depending on the application and data set in question, 
H Q S A R allows fragments to be distinguished based on atoms, bonds, connections, 
hydrogens, and chirality parameters. The atoms parameter enables fragments to be 
dstinguished based on the elemental atom types they contain, for example, allowing 
benzene be distinguished from pyridine. The bonds parameter enables fragments to be 
distinguished based on bond orders, for example, in the absence of hydrogen, allowing 
butane to be distinguished from 2-butene. The connections parameter provides a measure 
of atomic hybridization states within fragments. That is, with connections on, fragments 
are distinguished based on the number and type of bonds made to their constituent atoms. 
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The hydrogens parameter enables the generation o f fragments that include hydrogen 
atoms. A consequence of setting this option is that many more fragments are generated. 
The chirality parameter enables fragments to be distinguished based on atomic or bond 
stereochemistry. Thus, this parameter allows fragments containing a cis double bond to 
be distinguished from the trans counterpart, and R-enantiomers to be distinguished from 
S at chiral centers. 

Appl ica t ion of Molecu la r Holograms in Q S A R 
One of the first demonstrations of the Q S A R modeling power of H Q S A R was obtained in 
a retrospective analysis of a data set endothelin inhibitors. The data set19 consists of 
inhibition of endothelin-1 binding to A 1 0 rat thoracic aorta smooth muscle cells for a 
series of 36 compounds containing an aryl sulfonamide moiety with an isoxazole analog 
bonded to the amide nitrogen. Analysis of the data set by the C o M F A 3 technique is not 
straight forward due to different charge computation schemes, structure optimization 
techniques, and structure orientation schemes, although a model with cross-validated-r? 
(i.e. q2) of 0.70 and SE of 0.69 can be obtained 1 9. Molecular Holograms were generated 
for each molecule in the data set using lengths in the range 53 to 201, and fragment sizes 
in the range 2 to 9 atoms. The model based based on holograms of length 53 gave cross-
validated-r? of 0.59 and SE of 0.81 (see Figure 2). Figure 3 shows the outcome of 
randomization testing of the H Q S A R model. Randomization testing involves randomly 
redistributing the activity data across the compounds and attempting to derive statistical 
models that correlate the scrambled data with the molecular descriptor. Figure 3 shows 
the distribution of randomized q2 values relative to the observed q?, and provides a 
means by which the liklihood that the observed correlation could have arisen by chance 
can be assessed. 

One of the key advantages of the C o M F A and related techniques has been the capability 
to visualize, using 3D isocontour plots, those regions of space indicated by the P L S 
model to be highly correlated with the activity data. In H Q S A R it is possible to identify, 
from their P L S coefficients, those bins of the molecular hologram that were most 
significant in explaining the variation in activity. The fragments in those bins can then be 
identified, and then each atom in the molecule is color coded based on the fragments that 
it occurred in. Figure 4 shows the color coding for four members of the sulfonamide 
endothelin data set described above. It is satisfying that the color coding observed in this 
set is consistent with the 3D isocontour maps derived from the C o M F A study. Thus, 
amino group substitution at the 5-position of the 1-naphthyl group is favourable in the 
most active compound (8), but shifting the substitution around the ring to the 6- or 7-
position (compounds 11 and 14) leads to a decrease in activity as indicated by the color 
coding of the amino group nitrogen atom. A similar trend is seen in the 2-naphthyl series 
as indicated by compound 31, which has very poor activity. 
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Figure 2. Cross-validated predicted activity vs. actual activity for the endothelin 
data set. 

Figure 3. Histogram of cross-validated r frequency of occurrence for 1,000 
H Q S A R runs with scrambled response data for the Endothelin data set. 
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Figure 4. H Q S A R model interpretation for four members of the Endothelin data 
set. (Figure is printed in color in color insert.)  O
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In subsequent studies, the general applicability o f the Molecular Hologram descriptor in 
Q S A R studies has been investigated in detail using published data sets exhibiting a range 
of biological end-points. One key point to note, is that the H Q S A R analyses shown in 
Tables A and B are extremely fast (60 to 120 seconds per data set on an SGI 0 2 R10K) 
and the data set preparation time is also minimal. In contrast, the 3D Q S A R techniques 
may take several weeks of preparation in order to generate an appropriate conformation 
and mutual alignment of structures. 

Compar ison with 2 D Q S A R techniques. Table 1 shows a comparison between H Q S A R 
and several 2D Q S A R methods, including connectivity indices, clogP/cMr, and 
descriptors based on molecular formula attributes, for some published data sets. In every 
case, H Q S A R outperforms the other 2D Q S A R methods in terms of q2 statistic - and in 
some cases by quite a significant margin. In those cases, where the other 2D Q S A R 
techniques generated reasonable models, similar predictive performance as judged by the 
SECV statistic. 

Compar is ion wi th 3 D Q S A R . Table 2 shows a comparison between H Q S A R and 3D 
Q S A R , primarily C o M F A , methods for some published data sets. Good P L S models (in 
terms o f q2) can be obtained for each of the eight data sets, that are comparable with the 
corresponding 3D Q S A R model in most cases. The dependency of H Q S A R on 2D 
molecular fragments does, however, reduce the generality of the method for ab initio 
predictions of activity for "unseen" compounds - particularly those that contain a large 
number of fragments that were not encountered in the training set. This is evidenced by 
the cross-validated standard error of prediction (SEcv) statistic shown in the table, which, 
in general is higher (worse) than the corresponding value obtained from the C o M F A 
study. In two cases leukotrienes2 9 and triazines 2 6, H Q S A R yields a significantly better 
Q S A R model than the 3D technique, Apex-3D and C o M F A , respectively. In the case of 
the triazines, C o M F A yields a q2 of 0.47, compared with q2 = 0.70 for H Q S A R . The 
C o M F A result can be significantly improved (to q2 = 0.61) by explicit inclusion of 
lipophilicity parameters within the regression equation. This result indicates that the 
Molecular Holograms do incorporate a broad amount of information that has influence 
over biological activity. In the remaining case, where 3D Q S A R performed less well , the 
angiotensins3 0, H Q S A R performed similarly. 

Comparison of the H Q S A R and C o M F A models shown in Table 2 indiates that, in 
general, C o M F A produces superior models in terms of predictive performance (SECV), 
but the similarity in the model statistics suggests that H Q S A R may be used as a probe for 
preliminary S A R prior to spending significant amounts of time building a complex 3D 
Q S A R model. In addition, the similar trend between H Q S A R and C o M F A models gives 
confidence that H Q S A R can be reliably applied in cases where C o M F A , or 3D Q S A R , is 
inappropriate or awkward, for example to large data sets. 
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Table 1: Comparison of H Q S A R and 2D QSAR techniques. 

Data Set N 
H Q S A R 2D Q S A R 

Data Set N <? SEcv ? SEcv r2 

Triazolinones 2 0 42 0.34 0.53 0.67 0.06 - -
Phenyltrypamines2 1 32 0.56 1.13 0.85 0.46 - -
Benzindoles 2 2 30 0.69 0.55 0.93 0.53 - -
M A O hydrazides 2 3 24 0.80 0.26 0.91 0.80 - -
Phenylthiothymines2 4 40 0.83 0.79 0.99 0.67 0.74 0.87 
Bisamidines 2 5 37 0.82 0.25 0.94 0.51 0.32 0.69 

Table 2: Comparison of H Q S A R with C o M F A 3D QSAR models. 

Data Set N 
H Q S A R C o M F A 

Data Set N SEcv R2 

q1 SE„ 
Sulfonamides 1 9 36 0.59 0.81 0.90 0.70 0.69 -
Triazines 2 6 54 0.66 0.63 0.84 0.47 - 0.66 
Benzodiazepines DS27 b 42 0.65 0.62 0.90 0.70 0.59 0.99 
Benzodiazepines DI27 b 0.62 0.55 0.92 0.73 0.45 0.96 
Benzodiazepines DI/DS27 b 0.81 0.56 0.97 0.79 0.56 0.98 
Steroids CBG3 21 0.71 0.81 0.85 0.75 0.66 0.96 
Estrogenics 2 8 50 0.78 0.70 0.89 0.67 - 0.89 
Leukotriene antagonists29 13 0.80 0.64 0.99 0.51" 0.51' 0.87* 
Angiotensins 28 0.48 0.81 0.85 0.48 0.75 0.93 

a 3D Q S A R result obtained using Apex-3D Q S A R instead of C o M F A . 
b Data set published with two types of binding affinity data - D S is affinity for the 
diazepam sensitive subtype of the benzodiazepine receptor; DI is affinity for the 
diazepam insenstive receptor subtype; DI/DS is a measure of ligand selectivity between 
the two receptor subtypes. 
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Effect of Molecular Hologram Parameters 
In a previous section it was indicated that Molecular Hologram Q S A R performance is 
sensitive to the length selected, due to alteration of the distribution of fragments into 
hologram bins and changes to the pattern of so-called "fragment collisions". For several 
data sets, the variation in q2 for a variety of Molecular Hologram lengths is shown in 
Figure 5. It is evident that there is no direct correlation between hologram length and the 
predictive quality of the Q S A R model produced. This observation is reasonable since a 
change in hologram length leads to an unpredictable change in bin occupancies. 
Furthermore, the chart shows that for some hologram lengths, P L S is able to find much 
stronger (or weaker) correlations between the fragments and the biological activity. It 
should be noted that for all hologram lengths some kind o f predictive model can be 
obtained. However, for the purpose of reporting, the most reasonable statistics to use 
might be those arising from the median model generated across a variety of molecular 
hologram lengths. 

A s would be expected, the predictive quality of an H Q S A R model is also very dependent 
on the setting of the atoms, bonds, connections, hydrogens, and chirality parameters. The 
way in which H Q S A R models wi l l vary is, of course, highly dependent on the nature of 
the data set under investigation. For example, ignoring chirality during Molecular 
Hologram generation w i l l have no effect on the final Q S A R i f the data set contains no 
enantiomers or bond stereomers - but w i l l be critical for data sets where differences in 
biological activity are observed between stereoisomers. 

Summary 
Q S A R techniques have proven extremely useful in the design of bioactive molecules. 
Although classical Q S A R techniques have provided useful correlations within essentially 
congeneric series o f molecules, the major breakthrough has been with the advent of 3D 
Q S A R . Although 3D Q S A R techniques have been shown to have broader applicability 
and in general yield statistically more robust Q S A R models, a major limitation has been 
the dependency on molecular fields to describe molecules. Inherent in the use of such 
field based descriptions is the need to identify a bioactive conformation and mutual 
alignment of the structures, where in most cases there is no a priori reason to select on 
conformation or alignment rule over another. The sensitivity of the resulting Q S A R 
model to these, essentially arbitrary, choices has led researchers to investigate alternative 
3D Q S A R techniques that do not require molecular alignment, and also a resurgence of 
2D methodologies such as that described herein. 

Molecular Holograms provide an entirely empirical description of molecules that are 
based on traditional 2D fingerprint methodology. The significant advantage that this 
approach offers relative to 3D Q S A R techniques is that it is only necessary to know the 
atomic connectivity information for the molecules, and thus, ambiguity due to 3D 
conformation and alignment decisions is removed. 
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r r CM CO CO t 

Hologram Length 
- Benzodiazepines DS 
Angiotensins 
Leukotrienes 

Estrogenics 

Steroids 

Figure 5. Variation in H Q S A R cross-validated r2 as a function of Hologram 
Length for several data sets. 
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The discussion of the Q S A R modeling performance of H Q S A R presented in this chapter 
illustrates the broad applicability of the descriptor and the statistical robustness of the 
resultant Q S A R models in terms of cross-validation statistics. Extensive randomization 
testing of the P L S models discussed herein shows that the probability of obtaining 
similarly high correlations by chance to those actually obtained using Molecular 
Holograms is essentially zero. In most cases examined H Q S A R outperforms the other 
2D based methodologies investigated, in many cases producing results similar to C o M F A 
in terms of the ability to build statistically robust Q S A R models. 

The promising results presented herein may lead the reader to believe that H Q S A R can be 
used as a replacement for 3D Q S A R , but this is not the case. The superior speed of 
H Q S A R permits its application to large data sets (of the order of thousands to tens of 
thousands) where 3D methods are simply inappropriate. Furthermore, since an H Q S A R 
analysis of a traditional Q S A R data set (of about 50 compounds) can be completed in 
under half an hour this is a useful technique to probe a data set for any preliminary S A R 
activity prior to investing more time in the derivation of a more complex model. In this 
way, H Q S A R can be used to guide and monitor the construction of a Q S A R data set, to 
which 3D Q S A R can subsequently be applied to provide additional insight into the 
underlying structure-activity relationship and pharmacophoric information that is not so 
readily accessible from an H Q S A R study. 
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Chapter 15 

Adapting Structure-Based Drug Design 
in the Paradigm of Combinatorial Chemistry 

and High-Throughput Screening 
An Overview and New Examples with Important Caveats for 

Newcomers to Combinatorial Library Design Using Pharmacophore 
Models or Multiple Copy Simultaneous Search Fragments 

Arup K . Ghose, Veharkad N. Viswanadhan, and John J. Wendoloski 

Department of Molecular Structure and Design, Amgen Inc., One Amgen Center 
Drive, Thousand Oaks, C A 91320 

Impressive advances in the fields of combinatorial chemistry and high
-throughput screening have created a strong demand for computational 
methods for designing combinatorial libraries. Several computational 
and database tools aid in the design of such libraries. These include 
tools for reaction planning, scaffold selection, reagent searching, 
reagent diversification and virtual screening. Given a pharmacophore 
hypothesis we presented here a novel reaction based virtual library 
design method. It gave a systematic approach for reaction and reagent 
selection that will eventually lead to a combinatorial compound library 
satisfying the pharmacophoric geometry. Similarly, given the 3D 
structure of the protein-ligand complex (from X-ray or NMR), one can 
generate a pharmacophore hypothesis using multiple copy 
simultaneous search (MCSS) which can be used for a library design. 
An example of a focused library design using the second technique is 
presented. 

1. Introduction 

Tremendous advances in combinatorial chemistry 1 ' 2 since its introduction in 1984, in 
the field of peptide synthesis 3, and the related fields of high-throughput screening 4, 
robotics and cheminformatics 5 have given us enormous opportunities to synthetically 
generate and biologically test diverse collections of organic compounds. A reduction 
in the time required to obtain 'hits' (active compounds which are not necessarily very 
potent) may be realized as a result. In addition, the advent of high-throughput 
screening has led to the generation of enormous S A R data that needs to be analyzed 
by computational chemistry methods, facilitating the goals of medicinal chemistry 
efforts viz., generation, diversification and optimization of lead compounds. 

The goal of generating a combinatorial library for a given biological target is to find 
active compounds or 'hits ' . Obviously, the probability of finding such hits is 
enhanced i f the library is specifically designed for the given target or the 
complementary pharmacophore. Thus, combinatorial library design should be an 
integral part of combinatorial chemistry. Two types of combinatorial libraries are 

226 © 1999 American Chemical Society 
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used in high-throughput screening to generate S A R data. The first type is the 
universal library, which may be defined as a library designed or constructed such that 
it can provide hits against a wide range of biological targets. In such a library, there 
would be obviously no restrictions in favor of particular scaffolds or functional 
groups. It may include known drugs or ligands that conform the intuition of the 
medicinal chemist and compounds modeled computationally so that they form a 
diverse collection, accommodating a variety of pharmacophoric patterns. It w i l l be 
important to profile the universal library so that, as the biological targets and the 
corresponding high-throughput screening assays are developed, these libraries can be 
prioritized for biological testing. The second library type, the focused library, is 
either designed around a scaffold with some R groups or without a common core, but 
designed to generate compounds likely to fit the pharmacophore in different ways. 
Once designed and synthesized, these libraries are registered in a database organized 
to correlate with their chemical, biological and physical data. 

Clearly, the success in these efforts depends on the coordination among synthetic, 
computational and database aspects of combinatorial chemistry and selective 
application of structure determination techniques (X-ray crystallography and N M R ) . 
In this article a general discussion of computational and database aspects of 
combinatorial chemistry is initially presented. This is followed by a discussion of 
how to improve the utility of combinatorial chemistry by developing focused 
libraries. Design of focused libraries is discussed both when the 3D structure of the 
target protein is available and when such information is unavailable. Particularly, the 
recently developed technique of multiple copy simultaneous search 6 ( M C S S ) is 
shown to be useful in selecting scaffolds and corresponding reagents when 3D 
structural information on the target protein is available. 

2. Computational and Database Aspects of Combinatorial Chemistry. 

2.1 Information Technology in Combinatorial Chemistry. Information technology 
provides the means to create and access databases of compounds, both corporate (in-
house) and commercial (3D or 2D structure, chemical, physical or biochemical data, 
etc.). The environment for storage, retrieval and manipulation of chemical databases 
can be created by commercially available software such as M D L - I S I S 7 . However, an 
information system for combichem is necessarily more complex, involving continual 
construction and management of virtual libraries (any computer generated library, 
universal or focused, that is amenable to high throughput synthesis) of compounds for 
planning and production stages and for analyzing the libraries for emerging targets. 
The project library-central library construct of M D L - I S I S 7 addresses some of these 
needs. A n example of a compound library registered using that construct is shown in 
Figure 1. A n enumerated version of the same library, depicting individual molecules, 
usually holds more information such as biological and physicochemical data, plate-id, 
well location, etc. pertaining to each compound in the library. The planning of further 
'datamining' experiments (computational, synthetic or biochemical) is facilitated by 
access to these databases. A smooth communication between a high throughput 
chemical synthesis robot and the high throughput biological screening robot is 
another important aspect of combinatorial chemistry. Thus, information technology is 
critically important in ensuring the success of combinatorial chemistry. 

2.2 Small Molecule Lead Development and Combinatorial Chemistry. Figure 2 
shows an overview of the lead generation and optimization process in drug discovery 
and the role of combinatorial chemistry in the process. It is assumed that some S A R 
information or target protein 3D structure is available, which is used to formulate a 
plausible pharmacophore hypothesis. Such information often comes from screening 
of the corporate compound libraries. Database searches along with modeling and 
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visualization would then generate computational 'hits' which may lead to candidate 
ligands that can be accessed either from a vendor or from an established synthetic 
route. These 'computational hits' may then be acquired and screened for generating 
new S A R data. This data provides the crucial information for designing focused 

Figure 1. A n example of a combinatorial library of cycl ic tertiary diamines 
registered using M D L Project library-Central library construct. 

libraries and finally for obtaining optimized leads, by an iterative process involving 
medicinal chemistry, X-ray crystallography, N M R and computational chemistry in 
addition to further biological testing. This process culminates in the selection of 
candidates for cl inical development as attested by recent successes 8. The design 
aspect of combinatorial libraries (focused and universal) is most critical to the success 
of lead development. Careful reaction planning, compound diversification and 
iterative experimentation may be considered integral to library design. 

2.3 Reaction Planning, Reagent Searching and Screening. The first challenge in 
combinatorial chemistry efforts is to plan a combinatorial reaction scheme that can 
generate a large number of compounds with a central core (generally, but not always) 
in high yields. Searching the medicinal chemistry literature for common central cores 
is a popular route to scaffold selection. This may also be dictated in part by the types 
of reactions typically used by a group (for example, linear vs. multi-component 
condensation ( M C C ) syntheses). Figure 3 shows a hypothetical reaction scheme for 
a combinatorial library of tertiary amines. A search of the Available Chemical 
Directory 9 ( A C D ) for the reagents, compatible with the reaction scheme, generated 
5.2 K tertiary amines, 1.6 K aldehydes and over 20 K alkyl halides, leading to 
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Known SAR Data, 
X-ray, NMR structures of 
Protein-ligand complexes 

De novo 
Design 

Hypothesis 
Formulation: 

Pharmacophore, 
QSAR, MCSS 

Analysis 

Virtual Screening of 
Databases: 

ACD, Combichem 
Libraries etc. 

Acquiring compounds from Computational 
'Hits' 

Medium/High Throughput 
Screening 

Corporate Sample 
Bank 

Identification of Lead Compounds: 
Chemical stability, physicochemical 

property profile, limited SAR 

Optimization of the Lead 
Compound 

-No-

Medicinal Chemistry, 
Combinatorial Chemistry 

(Focussed Libraries); 
Biological/Biochemical 

Screening 
Computational Chemistry; 

X-ray crystallography; NMR; 

Satisfied? -Yes- Drug Developmental 
Studies 

Figure 2 Lead generation and optimization process in the context of 
combinatorial chemistry. 
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H Reductive 
>0 + R2— NH 2 

] J j Amination 

R3— X 

R j ^ N H R 2 > R f ^ N R 2 

Figure 3 A hypothetical reaction scheme for a combinatorial library of tertiary 
amines. 

approximately 166 bil l ion possible combinatorial compounds. This list is then pruned 
by a series of screening process that involves removal of polyfunctional, high, 
molecular weight compounds, etc. Such screenings still kept a list of compounds that 
is too big to be practicable. 

2.4 Reagent Diversification. Since only a limited number of reagents is practical for 
any library, it is essential to use a diverse collection of reagents at each R group 
position. Many properties that are relevant to drug action are easily estimated by 
commercially available softwares. These include fingerprint descriptors (2D, 3D, 
atom pair, etc.), log P , dipole moment, molar refractivity, topological information 
contents, etc. While the chemical descriptor space can not be uniquely or completely 
defined, it is possible to select a subset of properties that represent others implicitly. 
For example, 2D fingerprints supplied by Tripos or M D L software implicitly contains 
information about hydrogen bonding donors and acceptors. Our clustering 
experiments with several different properties and combinations showed that 2 D 
fingerprints are quite good general descriptors. However, a greater range of 
physicochemical properties is obtained when a diverse set of physicochemical 
descriptors is used. Table 1 shows the range of calculated log P ' s ( C L O G P ) and 
molar refractivities ( C M R ) when 2D fingerprints are used alone (Setl) and when they 
are used in combination with calculated C L O G P and C M R values (Set2) for different 
structural classes. In these experiments a hierarchical clustering algorithm, as 
supplied by Tripos in their Selector module, was used and the compound nearest to 
the center of a cluster was selected. 

3. Improvement of Combinatorial Libraries using Other Technologies. 

Improvement of combinatorial libraries using other technologies may have two goals: 
(i) improvement of universal libraries so that the process of lead generation is 
accelerated; (ii) improvement of the focused libraries so that the optimization of the 
biological activity, bioavailability, blood stability, toxicity, etc. is accelerated. 
Computer technology and computational chemistry may be of great help in making 
such improvements by analyzing protein and ligand structures, physicochemical or 
quantum chemical properties. The analysis may be either towards verification or 
construction. In the first approach a possible virtual library is analyzed and only the 
members that satisfy the current requirements are made for biological testing. In the 
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Table 1. Examples showing the effect of using different physicochemical descriptors 
on the range of calculated properties in selecting compounds in a clustering 
algorithm. 

Structural Class no. of cpd's 
sel. / total 

C L O G P range C M R range 

Set 1 Set 2 Set 1 Set2 

Isothiocyanates 50/325 0.38 5.44 -0.15 7.90 2.65 7.40 2.20 7.60 

Sulfonyl halides 25/149 0.55 2.65 0.55 3.83 1.59 5.51 1.59 5.81 

Epoxides 25/285 -2.24 3.47 -2.24 7.05 1.70 6.86 2.00 7.60 

second approach, a virtual library is designed after an analysis of the reagents or the 
final products. Once designed, all its members may be synthesized for biological 
evaluation. The ligand structural and physicochemical properties may be used to 
design the libraries when no protein structure is available; when the protein or the 
protein-ligand complex structure is available, such information w i l l be used. 

3.1 V i r t u a l L i b r a r i e s and V i r t u a l Screening. A s stated earlier, the number of 
possible compounds is too large to be synthesized due to storage and time factors. 
Even with robotics automation and combinatorial chemistry, we can make only a 
minute fraction of the total possibilities. Currently there are many computer programs 
available that can build libraries from a limited number of instructions. There are also 
programs that can produce reliable 3D structures for these molecules. M a n y 
physicochemical properties relevant for biological activity can be calculated within 
experimental errors. The physical space necessary to keep such virtual libraries is 
negligible compared to the real libraries. Under the circumstances we may build a 
large virtual library provided we can develop a fast and reliable virtual screening 
(computational screening) program. 

U n l i k e physicochemical property prediction, the vir tual screening for 
biochemical or biological affinity may not be very reliable or even possible, since the 
requirement for biological activity most often is not precisely defined. Even when the 
drug discovery research starts using a target protein, we may not have any structural 
clue of the protein binding site until we have a small molecule ligand with a 
reasonable affinity. The situation may be even worse when the drug discovery 
process starts with cell or animal assay. 

The protein-ligand complex structure is by far the most valuable information to 
use in developing a virtual screen for a protein binding assay. In its absence the 
homology model may help to identify suitable ligands by giving an approximate 
nature of the binding site. The structure of the apoprotein, along with mutation data 
may also give important information for ligand design. Vir tual screening may be 
developed using any such information. 

After some hits are identified, analysis of the structural and physicochemical 
properties of the related ligands may lead to one or more of the following models: (i) 
A pharmacophore hypothesis, consisting of the chemical substructures necessary for 
the activity; (ii) A more precise 3D pharmacophore geometry; (iii) 1-3D Q S A R ' s ; 
(iv) ligand-protein complex structure. Although a high throughput mass screening of 
the corporate compound library became the standard for identifying the initial lead 
compounds, any of the above mentioned available information can be utilized in a 
virtual screening for a new lead identification or lead optimization. 

If we want to build a virtual library which is a few thousand fold bigger than 
what a high throughput screening assay can handle, virtual screening can be done in 
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two steps: (i) a high throughput virtual screening ( H T V S ) that w i l l screen out most 
unrealistic compounds; (ii) a medium throughput virtual screening ( M T V S ) to 
prioritize the hits of H T V S . The H T V S may be checking distance ranges between key 
pharmacophoric atoms, applying 1 D - Q S A R (a whole molecular property based 
Q S A R , available in many Q S A R packages) or 2 D - Q S A R (scaffold and substituent 
property based Q S A R , the traditional Hansch type QSAR[10,11]). The M T V S may 
include flexible pharmacophore search, 3 D - Q S A R (three dimensional structure and 
spatial property based QSAR[12-14]), molecular mechanics energy minimization of 
protein-ligand complex, etc. More elaborate calculations like conformational analysis 
of the ligands, quantum chemical calculations, molecular dynamics, free energy 
perturbation may be applied mainly to exceptions and difficult problems. In any case 
a subset of the virtual library w i l l be selected in the virtual screening process and the 
real library w i l l be generated accordingly. 
3.2 Focused Libraries using a Pharmacophore Hypothesis. We w i l l discuss here a 
novel reaction based combinatorial l ibrary design approach using a 3 D 
pharmacophore (hypothesis). This systematic approach may help us to decide 
reaction strategies and reagents that w i l l lead to one or more combinatorial libraries 
satisfying the 3D pharmacophore geometry. From the standard medicinal chemistry 
structure activity relationships (SAR) data it is often possible to make a hypothesis 
regarding the substructures necessary for the biological activity of interest [15,16]. 
Comparison of the geometries of a few conformationally diverse compounds may 
even suggest the 3D geometrical arrangements of these groups. One approach for 
generating a combinatorial library may be to consider various bio-isosteric groups 
and attaching them to a suitable scaffold. Let us, for example, consider the 
pharmacophoric groups necessary for the matrix metalloproteinase ( M M P ' s ) activity 
[15], Figure 4. The 3D geometrical orientation of these pharmacophoric groups 
is 

Figure 4. The five pharmacophoric groups that helped to bind with the 
M M P ' s are indicated by asterisk mark. 

available from the X-ray structure of human fibroblast collagenase. If one wants to 
find a scaffold [17,18] where all the pharmacophoric groups can be put together he 
may easily identify scaffolds as shown in Figure 5. One can even bui ld virtual 
combinatorial structures by altering the R groups. This approach may be useful in 

Hydrophobic group 

Hydrogen donor 

HO 

Hydrophobic group 
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designing a virtual library. However, the major problem of this approach is that 
unless there are suitable reactions and reagents available to attach these groups in a 
combinatorial fashion, such a library w i l l remain a virtual library only! The method 
that was found to be very useful in our hands, consists of the following steps: 
(i) Start from the most important pharmacophore group. In the case of the M M P 
inhibitors it is the hydroxamate group. Keep in mind that this group may not be a 
good functionality for searching the reagent database l ike A C D , i f it is not very 
common and i f it can be made easily from a common reagent. For example, a 
carboxylic acid may be a better choice for hydroxamate in the present case. 
(ii) Consider one or two other pharmacophore groups close to the starting one to 
cover in the initial reagent search. Keep at least one functionality in this reagent that 
can be used for adding the rest of the pharmacophore groups. Use pharmacophore 
distance constraints to screen reagents. The nature of this growing functionality w i l l 
dictate the reaction and the next reagent searching. The distance of the growing 
functionality from the rest of the pharmacophore groups can be used to select the 
next set of reagents. A reagent having only the starting pharmacophore group with 
several easy linking functionalities may also be a good choice. 

Hydrophobic group Hydrogen donor 

Hydrophobic group 

Figure 5. A n example of a chemically unplanned combinatorial library. 
Without appropriate reactions and reagents the virtual combinatorial 
structures may be unattainable in the laboratory. 

(iii) Where there are many choices for regents, diversification of the physicochemical 
properties of the ligands keeping the pharmacophore features within a tighter range 
may be a good strategy. 

In the case of the M M P inhibitors, one can start from a carboxylic group as a 
pharmacophore group that may eventually be converted to a hydroxamate. The 
carboxylic acid should have a hydrophobic group to satisfy the distance and 
orientation requirement of the P r hydrophobic group. It should have some 
functionalities to add the other pharmacophore groups. Major advantages of this type 
of chemistry aided computational approach are: many structures that w i l l be 
generated are already known inhibitors of the M M P ' s (which may be considered as a 
validation of the procedure); it w i l l be easy to convince a chemist to perform the 
synthesis (an even better approach in this respect is to discuss the general idea to a 
chemist and get his input about the reaction and general nature of the reagent during 
this computer design). 
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3.3 Focused Libraries using a Protein Structure and the MCSS Computational 
Method. The major problem in designing compounds or libraries using 
pharmacophoric information is that the addition of currently nonexistent 
pharmacophoric groups is arbitrary and based on diversif icat ion of the 
physicochemical properties of the reagent. The process can be more direct i f we have 
the target protein structure and an approximate knowledge of the binding pocket. 
Theoretical identification of the hot spots of the protein binding pocket was initiated 
by Goodford. In his G R I D program[19], a rectangular box is created in the binding 
pocket and it is divided into smaller grids. A t each grid point different types of 
representative probe atoms are placed and interaction with the protein is calculated. 
One major problem of this approach was that atoms in a molecule are always 
accompanied by dipolar bonds from the neighboring atoms. Both eletrostatic and van 
der Waals interactions of the neighboring atoms often invalidated the results based on 
the core atom alone. One immediate solution was to use small molecules like water 
instead of oxygen, methane instead of neutral carbon, etc. However, it was not a 
complete solution either since due to multiple minima problem one may get very 
different results depending on the initial orientation of the molecule. Studying the 
ligand in many different orientations was also slow. Karplus et al. [6] suggested a 
better approach, the Mult iple Copy Simultaneous Search ( M C S S ) . In this method 
each molecule was docked randomly at the active site in many different orientations. 
The energy of the whole system (protein and multiple ligands) was minimized 
keeping the protein fixed. The energy expression d id not have interligand 
interactions, thereby allowing each ligand to move to the nearest minimum. The 
visual analysis of the M C S S results is available through Quanta software[20], Figure 
6. Here the M C S S calculation was done on the N-terminus S H 2 domain of the 
S H P T P 2 protein. This intracellular protein binds various phosphotyrosine proteins in 
the cytoplasmic signaling pathways [21]. Methylphosphonic acid was used as the 
ligand in this calculation. In the analysis module, one can manipulate ligand display 
by changing the interaction energy boxes. 

A few factors that may be difficult to handle in this type of approach are: (i) 
solvation of the protein; (ii) structural changes of the protein as a consequence of 
ligand binding. Solvation energy of the ligand may be computed and used in an ad 
hoc basis to increase the reliability of the interaction energy. In any case the 
interaction energy should be compared only for very similar groups. In general the 
interaction energies of the charged groups are much higher than the neutral groups. A 
recent publication by Joseph-Mccarthy et al. [22] claimed that earlier version of 
M C S S did not have the internal energy of the ligands, thereby giving bent benzene in 
some of their calculations. In other words, one should be aware of the M C S S version 
that he is using. Nevertheless, this method can be a very useful method for 
combinatorial library design. Most of the previous efforts in using M C S S fragments 
to design combinatorial libraries [22-24] concentrated in building structures that w i l l 
satisfy the pharmacophoric geometry without taking into account the practical aspects 
of combinatorial chemistry. A chemistry driven strategy, as discussed in the previous 
section, once again may give structures that are synthetically tractable as well as a 
few may be very close to the known inhibitors. 

Let us watch more closely the whole process using the SHPTP2 phosphotyrosine 
binding pocket as an example. When the M C S S calculation was done using a large 
variety of ligand at the N-terminus SH2 domain, one may identify at least four 
interesting binding regions, shown in Figure 7. Among these, two are obvious even 
by analyzing the peptide ligands in the X-ray crystallographic structures: (i) a cationic 
phosphate binding pocket; (ii) a hydrophobic pocket. Two other binding regions that 
may be utilized are the Lys-91 and Glu-17 side chains. M C S S interaction energy 
showed that the phosphate binding pocket is probably the best binding region. This is 
consistent with the fact that dephosphorylated peptides had very low binding affinity 
for SHPTP2. We w i l l therefore start searching the reagent from the phosphate binding 
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Figure 6. Analysis of the M C S S results of the N-terminus S H 2 domain of 
SHPTP2 with methanephosphonic acid as the ligand. 
(Figure is printed in color in color insert.) 

Figure 7. A n M C S S deduced pharmacophore model for the S H 2 domain 
phosphotyrosine binding pocket of SHPTP2 protein. 

(Figure is printed in color in color insert.) 
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1 st reagent 2nd reagent 3rd reagent 

Figure 8. Successive search of reagents to design a combinatorial library 
that can attain the pharmacophoric geometry. 

pocket. Phosphotyrosine type compounds with different phosphate mimicking groups 
may be the first choice i f we do not want to make any major change here, Figure 8. 
W e want to use the carboxy functionality to add reagents that can reach the 
hydrophobic pocket and the Lys-91 pocket. Here we w i l l search for reagents that can 
be coupled with the carboxyl group, for example, amines or alcohols. It should have a 
hydrogen accepting functionality at a desired distance and orientation that w i l l bind 
with the lysine side chain and so on. If the first reagent is not very flexible such a 
distance and orientation may be obtained either by model building and minimization 
or even from the structure of the X-ray ligand and the M C S S functional group. A few 
immediate hits in this search were the m-aminobenzoic acids. To add the hydrophobic 
groups one can easily think of a phenolic O H group which can be coupled with 
different alkyl halides. 

These binding features of the protein were consistent with the relative binding 
affinities of several synthetic peptides, made here, whose IC50 value ranged between 
submicromolar to micromolar level. Interestingly enough, an independent effort by 
Lunney et al, [25] showed that several closely related compounds, Figure 9, showed 
a moderate binding affinity for PP60 Src S H 2 domain. Although these two SH2 
domains are structurally very similar there is one obvious difference between the Src 
SH2 domain and the S H P T P 2 SH2 domain. The former has a much shorter loop 
where S H P T P 2 Lys-91 is located. The C O N H 2 group in the Src SH2 inhibitors 
interacted with Lys-60 backbone. 

4. Concluding Remarks 

Combinatorial chemistry is definitely a major blessing in the field of drug design. 
However, one should not be carried away by the possible number of compounds that 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
01

5

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



2 3 7 

can be made, in theory, by this technology. It w i l l be an extremely useful technology 
i f we make smart libraries with all the knowledge of medicinal chemistry. Use of 
pharmacophore modeling, 3 D - Q S A R and especially target protein structure in the 
design of combinatorial libraries may be of major help in designing such smart 
libraries. 

Figure 9. A few closely related compounds as proposed for SHPTP2 SH2 
domain, showed moderate activity for a closely related protein, PP60 
Src SH2 domain. 
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Chapter 16 

The Basic Shape Topology of Protein Interfaces 

John Lawton 1, Melanie Tudor 2, and W. Todd Wipke 3 

1 Molecular Engineering Laboratories, Department of Chemistry and Biochemistry, 
University of California at Santa Cruz, Santa Cruz, C A 95064 

2 Department of Chemistry, Mercer University, Macon, G A 31207 

Basic Shapes are a set of eight differential geometric shape descriptors that 
capture domain-independent local surface information. This paper describes the 
use of these shapes to study the surface complementarity of interactions regions 
in three classes of complexes: protein inhibitor-protein, protein oligomer, anf pro
tein DNA. We derive a shape-shape association plot and a shape parameter affinity 
model (SPAM) that helps in analyzing the degree of shape complementarity. 

Shape is an integral part of chemistry, particularly in the area of molecular recogni
tion. A t the lowest level, shape dictates the possible orientations that can occur between 
molecules, which influences their physical properties such as reactivity [1,2], solubil
ity [2], and associativity [3,4]. In this paper, we have chosen to study the nature of shape 
associations at protein interfaces. 

Previously, we have demonstrated that with a program called QSDock (Quadratic 
Shape Descriptor Docking Algorithm) [5,6], it is possible to align accurately and ef
ficiently similar or complementary molecules using only shape. QSDock uses local 
surface properties that include surface normals and principal curvatures to determine 
transformations intended to optimize either the shape similarity or the shape comple
mentarity between two molecules. The method was found to be both fast and accurate. 
It docks molecules two orders of magnitude faster than other docking algorithms, and 
the docked molecule positions have average root mean square deviations (rmsd) from 
crystal ligand orientations less than 1.0 A. A key feature of the QSDock program was 
the explicit use of shape which reduced the computational complexity of docking. 

Shape informacion can also be used explicitly to improve the accuracy of molecular 
shape comparisons. This can be done by directly comparing the local shapes of two 

3Corresponding author. 

© 1999 American Chemical Society 2 3 9 
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aligned molecular surfaces. Currently shape comparisons are done implicitly, by cal
culating the common surface area or common volume between two molecules, using a 
three dimensional (3D) grid based approach [7]. We were particularly interested in using 
shape complementarity as a metric for ranking our plausible dockings. 

Before one can attempt to quantify shape associations, it is important to experi
mentally observe the shapes and their interactions in analogous known systems. This 
raises the obvious question, "How complementary in shape are the interface surfaces of 
molecules that are found to bind in nature?". A second question then follows, "Is the 
shape complementarity in nature constant, or is it sensitive to the size of the molecules 
interacting?". The 3D structures of complexes determined from crystal and N M R exper
iments are valuable resources that have made it possible to survey the types of shapes 
and the types of shape associations that occur at the interface regions. This information 
should provide a better understanding of the degree to which shape complementarity 
exists at protein interfaces and the importance of shape complementarity for molecular 
recognition. 

Background. In 1986, Connolly used the shape features of protein surfaces as a basis 
for docking proteins [8]. His reasoning was that proteins could be docked by associating 
a set of complementary features of each surface. He successfully docked the alpha 
and beta subunits of hemoglobin by matching a set of three or four peaks to a set of 
pits. Whi le he was not able to elucidate all the docked conformations in his test set, the 
novel use of shape gave us a glimpse of the potential of explicit shape representation 
for molecular shape comparison. Since then, several other groups have presented work 
based on the perception of local and global shape properties of molecules [9-16]. 

In this paper we present a topological survey of the basic shapes [ 17,18] of protein in
terfaces for three classes of protein complexes. The basic shapes are a set of differential 
geometric shape descriptors that capture domain-independent local surface information. 
The intent of this work is to lay the computational groundwork for quantitative measure 
of molecular shape complementarity or similarity. 

Shape: Local Versus Global. We choose to focus on the local aspect of molec
ular shape. Hence, the shape of each molecule is broken down to a set of shapes dis
tributed over the whole surface. This choice underscores our interest in sub-shape com
parisons, and ultimately in developing methodology for quantitatively measuring the 
shape complementarity between two objects that may differ in size. 

Experimental 
The 3D atom coordinates used in this work were taken from the Brookhaven Protein 
Databank. [19] The dataset consists of three classes: protein inhibitor-protein complexes 
(PI-PR) , protein oligomer complexes (P-OLI) , and protein-DNA complexes ( P - D N A ) . 
A complete listing of all P D B files used in this work is included in Table 1. 

Protein Complex Classes. The P I - P R class features proteins that present a por
tion of their backbone as the ligand to a receptor on another protein. The ligand region of 
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Table 1: Protein complexes used in this study 

P D B Protein inhibitor-Proteins R(A) 
lcho oj-Chymotrypsin/turkey ovomucoid (3rd domain) [20] 1.8 
2ptc Trypsin/PTI [21] 1.9 
2sec Subtilisin/elgin-c [22] 1.8 
2sni Subtilisin novo/chymotrypsin inhibitor 2 [22] 2.1 

Protein Oligomers 
lbov Verotoxin-1 [23] 2.2 
l l y n Sperm lysin [24] 2.75 
2pab Phosphofruktokinase [25] 1.8 
4hvp HIV-1 protease [26] 2.3 

Protein-DNA 
lcgp Catabolite gene activator protein(CAP)-DNA complex [27] 3.0 
lgat Erythroid transcription factor GATA-1 [28] N / A 
ltsr P53 core domain protein-DNA complex [29] 2.2 

the backbone interacts with the other protein in a fashion analogous to a peptidic ligand-
receptor complex. These interactions typically have a greater percentage of electrostatic 
character than typical protein interfaces. [3] In terms of shape associations, it is ex
pected that at short distances, the protein inhibitor associations with the receptor should 
be primarily between convex shapes on the inhibitor and concave shapes on the receptor. 
A s the distance increases we expect the shape associations to be analogous to protein 
oligomers, which associate mainly through non-specific Van der Waals interactions. 

The P - O L I complexes used in this study consisted of identical subunits. The shape 
distributions for each subunit are expected to be highly similar, and the shape associa
tions should be symmetrical. 

The proteins in the P - D N A class were constrained to have interactions with the ma
jor groove of D N A , although they were not precluded from interacting with the minor 
groove. The major groove of D N A appears as a smooth surface that flows along the base 
pair trajectory. The local shape of these surfaces is not expected to be high in informa
tion. However, the recognition of D N A is a chemical phenomenon, where the protein 
interacts with a specific sequence of base pairs. [30] If chemical recognition occurs at 
the base pairs, shape profiles for the protein may be similar to the shape profiles of the 
P - O L I protein inhibitor. 

Shape Perception. The perception of molecular shape is a two step process that 
first involves the generation of a molecular surface, followed by the characterization 
of the local shape for each point on the molecular surface. We have chosen to use 
the Connolly Ms-Dot program [31] using a probe radius of 1.4 A and a surface point 
density of 4 pts/A2 for generating molecular surfaces. The Connolly solvent accessible 
surface [32,33] provides a continuous surface which is required by our subsequent shape 
characterization methodology. We then smoothed the solvent accessible surface using 
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a simple convolution algorithm to remove local surface undulations. The convolution 
algorithm works by averaging the 3D coordinates of each point and its neighbors within 
a distance d = 2.0 A. This gives a smoothed molecular surface (SMS) which is used 
as the basis for shape characterization. The Connolly solvent accessible surface and our 
smoothed molecular surface of methotrexate are pictured in Figure 1 for comparison. 

Figure 1: Rendered Connolly Molecular surface (left) and a rendered smoothed molec
ular surface (right) of methotrexate. 

The emphlocal range curvatures [5,6] were calculated for each point on the S M S , by 
fitting a polynomial of the form ax2 + bxy + cy2 to a circular surface patch of radius 
r = 2.0 A. Determination of the least squares estimators (3 [34] for parameters a, b, 
and c, gave the coefficients of the second fundamental form II or the Hessian matrix. 
For each point, the principal directions, the direction of the minimum curvature (fcmm) 
and maximum curvature (kmax), were calculated by determining the eigenvectors of 

Gaussian and Mean Curvature. The Gaussian curvature (K) and the mean 
curvature (H) were used to classify shapes on the molecular surface. Gaussian and 
mean curvature represent the local second-order surface characteristics that possess the 
necessary invariance properties for this work. [17] The values for the Gaussian curvature 
and the mean curvature were computed from the principle curvatures kmin and kmax 
using Equations 1 and 2, respectively. 

II. [35] 

(1) 

(2) 

The Gaussian curvature is the product of the principal curvatures and the mean curvature 
is the average of the principal curvatures. Compared to the principal curvatures, the 
Gaussian curvature is more sensitive to noise and the mean curvature is less sensitive 
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to noise in the surface points. Additionally, Gaussian curvature is an intrinsic property 
of the surface which makes it insensitive to its orientation. The Gaussian curvature 
represents the continuity of the curvature of a surface region; it is positive for both 
concave and convex regions, negative for saddle regions and zero for flat regions. The 
mean curvature is an extrinsic property of the surface and is sensitive to its orientation. 
Its sign is negative for convex regions and positive for concave regions on the surface. 

The Basic Shapes, The basic shapes are derived from the signs of the Gaussian and 
mean curvature of the surface, which yields eight basic surface types: peak, ridge, saddle 
ridge, flat, minimal saddle, saddle valley, valley, and pit. The use of Gaussian and mean 
curvature, as opposed to the principal curvatures, allows saddle shapes to be resolved into 
saddle ridge, saddle valley and minimal saddle. Table 2 depicts the mapping of Gaussian 
and mean curvature to surface type. The signs of the Gaussian and mean curvature are 
computed using Equation 3 

{+ i f K>z 

0 if-z<K<z (3) 

- if K<-z 

where z e [-0.05,0.05] is a zero threshold . 

Table 2: Basic shapes derived from the signs of the Gaussian curvature K = kminkmax, 
and the mean curvature H = (kmin + kmax)/2. For values of zero in the table, a zero 
threshold z € [-0.05,0.05] was used. 

H + 
K 

z 
- Peak Ridge Saddle ridge 
z None Flat Minimal saddle 
+ Pit Valley Saddle valley 

Surface Interpenetration. In comparing the shape complementarity of molecular 
surfaces, surface overlap or surface interpenetration is inevitable. It is the result of the 
approximate nature of molecular surfaces in combination with situations where there 
are electrostatic attractions at the molecular interface. The Algorithm for determining 
inter-surface associations must be generalized to handle surface interpenetration as well 
as non-overlapping conditions. 

Inter-Slirface Distances. Surface associations were determined (see algorithm 1) 
by projecting points from the destination surface S', onto a surface normal n emanat
ing from the source surface S. The shortest distance t along the normal, subject to a 
projection distance threshold dt, was taken as the surface association distance. A d d i -
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tionally, the index to the closest point Sf- on the destination surface, was also returned, 
(see Figure 2) 

Figure 2: Inter-surface association is determined by finding the shortest distance t along 
the surface normal that is within a distance threshold dt to points on the destination 
surface. 

The projection distance threshold d t was derived empirically from the approximate 
point dispersal as a function of the point density used to generate the Connolly Molecular 
surface. For a surface generated at 4 pts/A2 the projection distance threshold was set to 
dt = 0.35 A. 

A grid based representation was used in the function GetNeighbors (see Algorithm 1) 
to minimize the computational overhead when determining the set of neighboring points 
S'n. The functions PointLineDist and PointOntoLine are simple geometric algorithms 
that have been described elsewhere. [36] 

Inter-surface Associations. The procedure for determining surface associations ( A l 
gorithm 2) loops twice, using each surface as both the source and the destination surface. 
It is similar to an approach used by Lawrence [37] to quantify surface complementar
ity based on the angle and inter-surface distance between associated surface normals 
of opposing molecular surfaces. It has been found experimentally that surface associ
ations from points on the source surface with lower curvature had better inter-surface 
alignments. Thus, surface associations were only considered i f the absolute value of 
the shape index on the source surface was lower than the shape index of the destination 
surface. The shape index [35] of a surface S £ [—1,1] was derived from the local range 
curvatures fcmin and kmax using the following equation: 

This had the effect of limiting the number of surface normals emanating from surfaces 
with a high degree of curvature, thus reducing a source of spurious associations, and 
more closely followed human perception of surface-surface associated points. 

Results 
In fourteen complexes used in this study, the P I - P R class had maximum surface inter-
penetration tmin E [-1.50, -1.25] A, while the P - O L I and P - D N A classes had max
imum surface interpenetration distances over the range t m i n G [—0.75 — 0.50] A (Ta
ble 3). (No surface interpenetration less than -1.5 A was detected in the datasets used 

n 

S'j Destination 
Surface 

(4) 
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Input: s,S',dmax; 
Output: N,tmin,j; 

1: 5 ; <- GetNeighbors(s, dmax,S')\ 
2: N <- Count(5;) 
3: if N is 0 then 
4: return 0 {No neighbors were found} 
5: end if 
6: for % e S'n do 
7: d! « - PointLineDist(s.n, 5 ^ ) ; 
8: i f r f > d t t h e n 
9: goto step 4; 

10: end if 
11: p' <- PointOntoLine(s.n, 5 ^ ) ; 
12: t « - D i s t ( s , / / ) ; 
13: if £ < t m i n then 
14: tmin 4 l>\ 
15: j <r- t; 
16: end if 
17: end for 

Algorithm 1: InterSurfDist: Given a set of points on the destination surface S' a 
maximum association distance dmax, and a point s = Si on the source surface, the 
inter-surface distance is calculated by projecting each neighboring point onto the surface 
normal, and ranking the distance t along the surface normal. The number of neighbors 
N, the shortest distance tmin, and the associated index j are returned. 

Input: S, S'; 

Output: M ; 

l: fori e Sdo 
2: JV, j , t <- InterSurfDist(Si, 5'); {See Algorithm 1} 
3: if AT is 0 then 
4: goto step 1 {No point was found} 
5: end if 
6: if A n g ( 5 i 5 5 j ) < 90° then 
7: goto step 1 {Invalid surface association (inside outside)} 
8: end if 
9: if iShapelndex^) | < |ShapeIndex(SJ) | then 

10: goto step 1 {source Si must be lower than dest Sj} 
11: end if 
12: M[Si, Sj] 4- M[Su Sj] + 1 {Increment Shape Association Profile} 
13: end for 
14: S S' {Swap surfaces} 
15: goto step 1 {Do a second pass} 

Algorithm 2: CreateShapeAssocProfile: Given two sets of 3D coordinates S and 
S' representing a source and destination surface, create a Shape Association Profile by 
tabulating all shape pair associations. (The Shapelndex function is defined in Equation 4) 
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Table 3: Results from the analysis of surface associations, where tmin is the short
est inter-surface distance, and tmaxN is the inter-surface distance where the maximum 
number of associations were found. A negative distance means that the surfaces are 
overlapping, implying electrostatic attractions. 

complex tmin (A) N tmaxN (A) N 
PI-PR -1.50 (4) 0.25 (1164) 
P-OLI -0.75 (7) 0.50 (1932) 
P-DNA -0.75 (4) 0.50 (642) 

in this analysis.) The inter-surface association distance ranges for tmaXN, was shorter 
for the PI-PR complexes £ m o a 5 ; v G [0.00,0.25] A, relative to the P-OLI and P-DNA 
complexes which had a distance range of t m a a 5 ^ G [0.25,0.50] A. 

Shape Information. Shape association information is presented in two forms, shape 
subunit profiles and shape association profiles. Shape subunit profiles show the type and 
relative number of shapes, as a function of distance, present at the molecular interface. 
Shape association profiles are used to convey information about the relative degree that 
two shapes are associated for a given distance range. For each shape association profile, 
forty shape association matrices were used to characterize shape associations over a dis
tance the range t G [—5.0,5.0] A, where each matrix held shape association frequencies 
over a 0.25 A distance range. Shape profiles for subunits of a given class were deter
mined by summing up the rows or the columns of a shape association matrix at each 
distance increment. Since shape subunit profiles are more fundamental, we wi l l present 
our results first using that analytical method. 

Shape Subunit Profiles. The shape subunit profiles for the PI-PR, P-OLI, and 
P-DNA complexes depicted in Figure 3 facilitate analysis of the number and the types 
of shapes that occur at protein interfaces, as a function of inter-surface distance. The 
frequency of surface associations is at a maximum at the inter-surface distance range 
t G [0.00,0.50] A for all three classes of proteins. The number of associations decreases 
rapidly as the inter-surface distance increases. There is one notable exception to this 
trend in the P-OLI dataset, where the frequency of valleys increases to a second smaller 
maximum at t = 4.25 A. 

A t shorter distances, the shape subunit profiles consist mainly of peaks, ridges val
leys, and pits. A s the distance increases, the histograms tend to flatten out and show 
significantly less bias towards convex and concave shapes. 

Shape Association Profiles. The shape association profiles at distance ranges 
t G [0.25,0.50] A and and t G [4.75,5.0] A are depicted in Figures 4 and 5, respec
tively. The plot on the left hand side of the figures are the shape association counts 
normalized to give the joint probability for a given association between two shapes. The 
plots on the right hand side of figures 4 and 5 are log odds plots where the shape as-
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Figure 3: Shape subunit profiles derived from the contact pairs of points at the pro
tein interface, for protein inhibitor-protein complexes (top), protein oligomer complexes 
(middle), and protein-DNA complexes (bottom). 
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sociation probabilities are normalized by the independent probabilities for each shape. 
A positive log odds score indicates that the association has a higher probability of oc
currence than random and is therefore statistically significant. A log odds score that is 
negative indicates that the association has a lower probability of occurrence than random 
and is statistically significant. 

A t shorter distances shape associations were observed in three out of four quadrants 
of the shape matrix, which indicates a propensity for convex-concave, concave-convex 
and convex-convex interactions. The absence of concave-concave shape associations, 
corresponding to the fourth quadrant, was expected. A t the longer inter-surface distance 
range of t € [4.75,5.0] A, the preferences for convex-concave and convex-convex inter
actions were still apparent in the PI-PR and P-DNA datasets. However, convex-concave 
associations were no longer dominant in all datasets. 

We feel it is necessary to comment on the data derived from the P-OLI dataset. The 
similarity of the shape subunit profile and and symmetry of the shape association profile 
of the P-OLI dataset was consistent with the fact that all complexes were homodimers, 
with each subunit possessing essentially identical shape. 

Discussion 
The graphs in Figures 3-5 summarize the qualitative results of both shape distributions 
and shape associations for three classes of protein interactions. Most surface associations 
occur at distances between 0.0-0.5 A, decrease rapidly, then level off as the surface 
distance increases. (Figure 3) A t short inter-surface distances, the shape distribution 
favors highly curved shapes such as peaks, pits, ridges, and valleys. 

In the PI-PR class, the protein inhibitor shows more peak and ridge with a little pit 
and valley, whereas the protein receptor shows a high proportion of valley and pit inter
actions, as one might expect, since the inhibitor is behaving as a small molecule fitting 
into the protein receptor. The P-OLI class shows a complete symmetry, each partner has 
the same shape distribution showing that the mode of interaction is symmetrical. In the 
P-DNA class the protein shows more peak and ridge than the than valley, whereas the 
D N A shows significant amount of valley shapes as we would expect for interactions in 
the groove. 

A t t G [0.0,2.5]A, the shape association profile for the PI-PR class (Figure 4, left) 
shows a high probability for inhibitor peaks and ridges interacting with receptor pits 
and valleys. In the P-OLI class, we see a similar pattern, but now its symmetrical. 
Surprisingly there is a high probability for peak-peak interactions, but when we observe 
the log odds plot for peak-peak (Figure 4, right) we see that there is no significance to 
this association, but there is significance to the peak-pit and peak-valley associations. 
The large negative log odds peak for valley-valley means that that association occurs 
less frequently than the random probability of the valley-valley association. Moving to 
the P-DNA class, the shape associations (Figure 4, bottom left) are similar to P-OLI, 
except we see less peak-pit. Again we see a high probability for peak-peak associations 
which in the log odds plot (Figure 4, right) has no significance, i.e. does not occur more 
frequently than would be expected on a random basis. The log odds plot does show 
peak-valley interactions to be significant as well as protein r idge-DNA saddle valley, but 
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Figure 4: Normalized shape association profiles (left) and log odds shape association 
profiles (right) over the range t € [0.0,0.25] A. 
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Figure 5: Normalized shape association profiles (left) and log odds shape association 
profiles (right) over the range t e [4.75,5.0] A. 
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protein saddle r idge-DNA valley interaction is significantly absent, for they cannot fit 
together. Similarly, flat-flat interactions have a low probability, but occur even less often 
than expected. Peaks on the D N A interacting with pits on the protein are infrequent, but 
significant. Saddle ridge-saddle ridge interactions show up as significant interactions in 
PI-PR and P-DNA, although their frequency is only moderate. 

A t longer interaction distances t e [4.75,5.00]A (Figure 5) there is an interesting 
inhibitor flat-protein peak interaction that is significant in the PI-PR class. In the P-OLI 
class there is a surprisingly high probability of pit-valley and valley-valley interaction of 
reasonable significance. Similarly in the P-DNA class protein pits are correlated to D N A 
flats and protein ridge to D N A flats. The general trend we observe is that at these greater 
inter-surface distances there is poor and sometimes inverse shape complementarity. The 
concave-concave relationship shows there is a cavity between the surfaces. There are no 
concave-concave shape associations at t € [4.75,5.00] A, for the close surface separation 
precludes the surfaces bending away from each other. 

Shape Complementarity. With our representation of surface interfaces, it is pos
sible to qualitatively assess the degree of shape complementarity of an interface for a 
given 0.25 A distance range. Assuming that complementary interactions involve sur
face associations between shape pairs of opposite degrees of curvature, i.e., pit-peak, 
ridge-valley,... peak-pit, we would expect the diagonal elements of the matrix to have 
high shape association probabilities as well as a high degree of correlation (positive log 
odds scores). This is not observed in the normalized shape association matrices but is 
observed in the log odds plots as a general trend at short distances (Figure 4, right), 
but not at larger distances (Figure 5, right). We see the highest correlations at each 
corner of the shape matrix for complementary interactions between surfaces of high cur
vature, but with weaker complementary correlations between the flatter surfaces. A s the 
inter-surface distance increases, the shape complementarity of the interactions is further 
reduced, and significant negative complementarity appears. It is difficult to see any di
agonal trend in the probabilities plots at the larger distance, but there is still a diagonal 
bias in the log odds plot (Figure 5, right), especially in the PI-PR class. 

We conclude that the molecular shape parameter affinity model (SPAM) is quite 
helpful in analyzing interacting surfaces of complexes for shape complementarity. We 
w i l l report elsewhere other applications of the S P A M model such as scoring molecular 
dockings. 
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Chapter 17 

Evolutionary Algorithms in Computer-Aided 
Molecular Design: A Review of Current Applications 

and a Look to the Future 
David E. C l a r k 

Computer-Aided Drug Design, Rhone-Poulenc Rorer Ltd . , Dagenham 
Research Centre, Rainham Road South, Essex R M 1 0 7XS, 

United Kingdom 

In the last few years, evolutionary algorithms have proved to be very 
powerful search and optimization procedures in many rational drug 
design applications. This chapter begins with a brief introduction to 
the two main classes of evolutionary algorithm in use at present, 
genetic algorithms and evolutionary programming. Following some 
comments concerning the implementation of evolutionary algorithms, 
a number of selected applications of these algorithms will be 
reviewed. The application areas covered include protein-ligand 
docking, de novo molecular design, QSAR and combinatorial 
libraries. After examining some pros and cons of evolutionary 
algorithms, some future directions for their application will be 
postulated. 

Many of the problems encountered in rational drug design are inherently difficult 
from a computational viewpoint. In many cases, computer-aided molecular design 
( C A M D ) tasks involve the optimization of a function whose response surface is 
complex and/or a search through vast (combinatorial) solution spaces. This state of 
affairs is ameliorated somewhat by the fact that, in rational drug design, one is 
usually content to locate "good" solutions rather than the "best" (or global 
optimum). Consequently, the application of heuristic algorithms becomes 
attractive. 

In the last decade, evolutionary algorithms have emerged as a class of heuristic 
algorithm and have found widespread application in the field of computer-aided 
molecular design. Mi lne recently calculated that, between 1989 and 1992, there 
were only 5 published papers with a chemical orientation that employed 
evolutionary algorithms. Since 1993, however, that figure has exploded to reach 

© 1999 American Chemical Society 2 5 5 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
01

7

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



2 5 6 

210 (7). M y own research corroborates these figures, as the graph shown in Figure 
1 demonstrates. It is clear that the number of papers published in the field of 
computer-aided molecular design that have employed evolutionary algorithms has 
grown rapidly, and continues to do so. Note that the figure for 1997 only counts 
papers published up to the month of August. 

I No . of Papers 

1991 1993 1995 1997 

Figure 1: Number of publications in C A M D using evolutionary algorithms 

It is the purpose of this chapter to introduce the most prominent classes of 
evolutionary algorithm and then survey some selected applications in the area of 
rational drug design. Various issues surrounding the implementation of 
evolutionary algorithms w i l l be aired and the pros and cons of this type of 
algorithm discussed. Finally, I shall seek to delineate some possible future 
directions for the application of evolutionary algorithms to rational drug design. 

Evolutionary Algorithms 

Broadly speaking, evolutionary algorithms are a class of search and optimization 
algorithm inspired by the mechanisms observed in natural selection. Traditionally, 
three main groups of evolutionary algorithms have been distinguished: 

• Genetic algorithms (with genetic programming as an offshoot) 
• Evolutionary programming 
• Evolution strategies 

A l l of these types of evolutionary algorithm share key unifying features such as 
the use of reproduction, random variation, competition and selection, giving rise to 
the evolution of superior solutions over time. Consequently, the historical 
distinctions between them are rapidly blurring and researchers in the evolutionary 
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algorithm community now prefer the umbrella term of "evolutionary computation" 
to cover the above classes as well as some others not mentioned here (2). 

For the purposes of this chapter, the focus wi l l be upon genetic algorithms and 
evolutionary programming because these have received the most attention from 
practitioners of rational drug design. In what follows, a brief description of these 
two types of algorithm wi l l be given. For more details on genetic algorithms, 
evolutionary programming and other kinds of evolutionary computing, the reader is 
referred to the comprehensive work edited by Baeck, Fogel and Michalewicz (3) 
and a growing number of introductory texts (4-10). 

Genetic Algor i thms 

The steps involved in a simple genetic algorithm are given below and explained in 
more detail thereafter: 

1. Randomly initialise a starting population of N members 
2. Assign each member a fitness score using a fitness function 
3. Select a pair of parents for reproduction 
4. Generate offspring using crossover and/or mutation 
5. Assign each offspring a fitness score using a fitness function 
6. Replace least fit members of population by the offspring 

if the offspring are superior in fitness 
7. Go to 3 until termination or convergence 

In common with other evolutionary algorithms, a standard implementation of a 
genetic algorithm works with a population of individuals, each of which represents, 
or is itself, an attempted solution of the problem under study. The quality of each 
of these attempted solutions is determined by a fitness function which assigns a 
score or fitness to each of the population members. The genetic algorithm proceeds 
by the repetitive application of genetic operators to the population; these operators 
being selection, crossover and mutation, in the simplest case. 

The genetic algorithm uses a selection operator to choose a pair of parents from 
the population from which offspring wi l l be produced. The selection operator 
generally embodies some kind of "survival of the fittest" mechanism in so far as 
parents are selected for breeding with a probability that is proportional to their 
fitness. Thus, fitter population members are more likely to pass on their 
characteristics to the next generation. 

The generation of offspring from the parents is effected by the application of 
the crossover and/or mutation operators. Crossover involves the splicing of the 
parent solutions at some randomly chosen point and then combining the resulting 
pieces to form offspring that differ from the parents while maintaining some of 
their characteristics. Mutation simply applies a random perturbation to the 
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offspring sometimes resulting in the creation of new genetic material and thereby 
helping to maintain the diversity of the population. These two operators are shown 
below for a simple case in which the population members are binary strings. 

Crossover (at point marked " X " ) : 

Parent #1: 100100001X1000011 > Offspring #1: 1001000010010001 

Parent #2: 100010000X0010001 > Offspring #2: 1000100001000011 

Mutation (at right-most bit): 

Parent: 1001000011000011 > Offspring: 1001000011000010 

Wi th the repeated application of the selection, crossover and mutation 
operators, the average fitness of the population increases over time until, 
eventually, the population converges on what is hopefully a good, i f not optimal, 
solution. 

Evolutionary Programming 

The steps constituting a simple evolutionary programming algorithm are as 
follows: 

1. Randomly initialise a starting population of N members 
2. Assign each member a fitness score using a fitness function 
3. Generate one offspring per population member using only mutation 
4. Assign the N offspring fitness scores using a fitness function 
5. A l l o w parents and children to compete for survival 
6. N survivors form next parent population 
7. G o to 3 until termination or convergence 

A s with a genetic algorithm, the first steps are the creation of a starting 
population and the calculation of the fitnesses of the population members. A t this 
point, however, the two algorithms diverge. In evolutionary programming, all of 
the population members give rise to offspring using only a mutation operator. The 
N parents and N children then compete for survival. A popular mechanism for this 
competition is known as tournament selection. This involves comparing the fitness 
of each population member against the fitness of a fixed number of randomly 
selected opponents from within the population. Every time the chosen population 
member's fitness exceeds that of an opponent, it receives a win. Once the whole 
population has been tested in this way, the members are ranked according to the 
number of wins they have achieved and the top N survive to form the next parent 
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population. A s with the genetic algorithm, this process of reproduction and 
selection continues until the population converges or some predetermined time 
limit is exceeded. 

Implementation Issues 

Having introduced the basic modus operandi of the most popular evolutionary 
algorithms, it is now necessary to examine some broader issues and questions 
surrounding their practical implementation. 

The first, and most important, of these is to consider whether an evolutionary 
algorithm is the most appropriate choice for solving the problem in hand. A s Luke 
points out (77), not all problems can be solved efficiently using genetic methods. 
There are problems that already possess very specialized solution strategies and it 
is unlikely that an evolutionary algorithm wi l l improve greatly upon these. A good 
example of this in the C A M D context is the work of Brown et al. (72) in which a 
genetic algorithm compared unfavourably to Ullmann's subgraph isomorphism 
algorithm for the task of 2-D substructure searching. 

Once it has been decided to pursue an evolutionary algorithm-based approach, 
the key maxim to bear in mind is "mould the algorithm to the application, not vice 
versa". There are two areas where this particularly applies. The first is in the choice 
of the encoding of the solutions, or indeed i f the solutions should be encoded at al l . 
It is not mandatory to represent solutions by strings, be they binary or otherwise! 
The work of Glen and Payne (13) and Westhead et al. (14) in the C A M D context 
illustrates this point nicely. In both these cases, genetic operators were applied 
directly to 3D structures during the course of de novo design. Rather than forcing 
an unnatural encoding upon solutions, it is preferable to use natural, problem-
related representations (2). 

Similar considerations apply to the choice and nature of genetic operators to be 
used. Here especially, the incorporation of problem-specific knowledge can lead to 
operators that are best suited to the application in hand. Again, the work of Glen 
and Payne (13) is a good example of this, as w i l l be detailed later. The importance 
of this cannot be overemphasized, particularly in the light of the "No Free Lunch" 
theorems propounded by Wolpert and Macready (75) which state broadly that for 
any algorithm, any elevated performance on one class of problems is exactly 
countered by poorer performance on another class. Thus, a "black box" 
evolutionary algorithm applied to a problem is unlikely to be as successful as one 
in which problem-specific knowledge has been incorporated. In general, many 
practical applications have shown that the best solutions are obtained after making 
substantial modifications to standard algorithms (2). A quote from Michalewicz (6) 
suffices to summarize these points: 

"It seems that a 'natural' representation of a potential solution for a given 
problem plus a family of applicable 'genetic' operators might be quite useful in the 
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approximation of solutions of many problems, and this nature-modelled approach 
... is a promising direction for problem solving in general", quoted in (2). 

Finally, and obviously, the construction of the fitness function for any 
application is a key consideration. A n inappropriate fitness function wi l l fail to 
guide the evolutionary algorithm to the desired solutions - "garbage in, garbage 
out"! A s fitness function evaluation is often the rate-limiting step in the operation 
of an evolutionary algorithm, it is worth seeking to optimize its computational 
efficiency, or choosing a more computationally efficient option where two equally 
accurate alternatives suggest themselves. 

To reiterate, the key message of this section is that when implementing 
evolutionary algorithms, better results w i l l be obtained i f the problem in hand, 
rather than tradition or dogma, dictates the choices made. 

Review of Current Applications 

In what follows, selected applications of evolutionary algorithms in the field of 
rational drug design w i l l be reviewed. As Figure 1 has illustrated, there is a large 
number of applications from which to choose and space considerations impose a 
strong constraint on the number that can be covered here. For more detailed 
coverage, the reader is directed to these recent reviews (16-20). The following 
applications have been chosen because they represent the state-of-the-art in terms 
of evolutionary algorithms applied to rational drug design and/or because they 
exemplify some interesting feature of evolutionary algorithms that I wish to 
underline. The application areas are the following: protein-ligand docking, de novo 
molecular design, Q S A R , molecular diversity/combinatorial libraries and finally a 
miscellany of interesting applications wi l l be listed briefly. 

Protein-Ligand Docking. One of the areas where evolutionary algorithms have 
met with most success in rational drug design is in protein-ligand docking. Both of 
the examples chosen in this section are the subject of other chapters in this book -
what follows may serve as a brief summary. 

G O L D . The first of the docking programs to be considered here is G O L D 
(Genetic Optimization of Ligand Docking) developed by Jones and co-workers 
(21,22). In G O L D , the ligand is allowed full conformational flexibility, including 
"flipping" of alicyclic rings, and the receptor is permitted partial flexibility via the 
rotation of single bonds connected to terminal acceptor or donor groups in the 
amino acid residues within the active site. One of the most interesting features of 
G O L D , from the perspective of this review, is that it is a parallel genetic 
algorithm. In other words, rather than operating on a single population of 
individuals, the algorithm maintains several populations in what is known as an 
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"island model". The only communication between the various populations consists 
of the periodic migration of selected individuals between the "islands". 

Each individual in G O L D is represented by four strings. The first two are 
binary strings that encode the conformation of the ligand and the protein, 
respectively. The latter two are integer strings that contain mappings between 
donor groups in the ligand and acceptors in the protein and vice versa. The 
evaluation of an individual's fitness involves the generation of the conformations 
of the ligand and protein and then the least-squares fitting of acceptor to donor 
points dictated by the integer strings. Once the respective orientations and 
conformations of ligand and protein have been thus determined, the fitness score is 
calculated as the sum of terms involving hydrogen-bonding, steric and torsional 
energies. Parent selection is effected by a roulette wheel mechanism and offspring 
are bred by crossover and mutation of the binary and integer strings. A further 
operator is necessitated by the parallel nature of G O L D : a migration operator 
controls the migration of individuals between populations. 

G O L D ' S performance was evaluated over a set of 100 protein-ligand 
complexes extracted from the Brookhaven Protein Databank (27). In 71% of the 
cases, G O L D was judged to have docked the ligand correctly - an extremely 
impressive result. More details on G O L D and results obtained with the program are 
presented in the chapter by Jones and co-workers. 

E P D O C K . The second docking application to be reviewed here is E P D O C K , a 
program developed by Gehlhaar and co-workers (23-25). E P D O C K represents an 
interesting application for a number of reasons. First, as its name suggests, it 
employs evolutionary programming, rather than the more common (at present) 
genetic algorithm. Second, the work has involved collaboration with an expert in 
evolutionary computation, David Fogel (of Natural Selection L i e , San Diego), 
something which may become more common as rational drug designers seek to 
extract the maximum value from evolutionary algorithm applications. 

In contrast to G O L D , E P D O C K permits only the ligand to be flexible. The 
conformation and orientation of the ligand are encoded in a real-valued string and 
multiple offspring are generated from each parent using mutation, which in this 
case involves the addition of a Gaussian random variable to elements of the string. 
Another key feature of interest is that a further level of sophistication is 
incorporated into E P D O C K - the mutation is what is termed "self-adaptive". In 
addition to the string containing the conformation and orientation information, each 
member of the population also has another string associated with it. This string 
contains, for each of the docking variables, a parameter that determines the size of 
the mutations available for that variable. These strings also evolve during the 
operation of E P D O C K so that the algorithm chooses for itself the most appropriate 
mutations for each docking variable as the search proceeds. The fitness of the 
individuals is determined using a fast molecular recognition potential (24), which 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
01

7

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



2 6 2 

is described in more detail in the chapter by Gehlhaar. Parent selection is carried 
out using a tournament selection scheme similar to that described earlier. 

E P D O C K has been shown to successfully dock ligands in a number of 
challenging test cases (24) and considerable work has been invested in seeking 
optimal values for some of the operational parameters used by the program (23). 

De Novo Molecu la r Design. There have been fewer applications of evolutionary 
algorithms to de novo molecular design than to docking; the one chosen for review 
here is the "Chemical Genesis" program of Glen and Payne (13). The program 
permits the fragment-based generation of (novel) 3D structures subject to a variety 
of constraints that may be scalar (e.g., log P), surface-derived (e.g., charge 
distribution) or grid-based (e.g., active site shape). 

A s was mentioned in an earlier section, one of the key features of the work of 
Glen and Payne is that the population members are the 3D structures themselves; 
there is no encoding. The genetic operators are applied to the evolving structures 
directly and, consequently, are able to embody many application-specific features. 
There are, in fact, two crossover operators, one allowing exchange of terminal 
portions of structures and the other permitting the excision and exchange of central 
portions of the solutions. Added to this are twelve mutation operators enabling, for 
instance, the variation of a structure's conformation and orientation and the 
addition or deletion of fragments. The fitness function applied to each member is 
simply the sum of the deviations from the applied constraints and parent selection 
uses the standard roulette-wheel method. A useful additional feature of Chemical 
Genesis is the production of a "fossil record" for each run of the program. This file 
records the evolution of each of the population members making possible a 
dynamic playback of the process of structure generation. 

Q S A R . A s with docking, Q S A R has been a fruitful area for the application of 
evolutionary algorithms. The instance that wi l l be described here is the Genetic 
Function Approximation (GFA) method developed by Rogers (26-28) and now 
available as a module of the Cerius 2 software (29). 

In G F A , each population member encodes a set of basis functions that w i l l 
comprise a Q S A R . These basis functions may be quantities such as logP, molecular 
weight and so forth. Q S A R models are derived from these basis functions using a 
fitting technique, such as linear regression, to generate appropriate coefficients. 
The fitness of each of the individuals is then determined by evaluating the Q S A R 
derived from it using Friedman's Lack-of-Fit (LOF) measure. This measure seeks 
to balance the error in the predictivity of the Q S A R model against the number of 
terms used to derive it. Thus, G F A aims to select models that predict well without 
being overfitted. Parents are selected using a probabilistic mechanism such that 
their chance of selection is inversely proportional to their L O F score. New 
members are bred from the parents using a crossover operator which splices and 
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recombines the strings of basis functions. A n optional mutation operator can also 
be invoked to swap one basis function for another within a string. 

In experiments with G F A using the standard Selwood dataset (27), the eight 
top-scoring models produced by the program were found to be as good as, or 
superior to, other published Q S A R s for that set. A n advantage offered by an 
evolutionary algorithm for Q S A R is that each run of the program generates a 
number of possible models, rather than just the single one generated by traditional 
techniques. Comparing various models output by the program can lead to added 
insights and by combining features from several models, superior Q S A R s may be 
produced. This benefit has also been noted by So and Karplus (30) when applying 
their Genetic Neural Network methodology. The advantages of multiple models 
wi l l be discussed more later because it is generally relevant to C A M D applications. 
G F A can also plot out a graph of feature usage during the course of a program run; 
this helps to show the relative utility of the different features considered as basis 
functions. Other advantages of G F A compared to traditional Q S A R methods are 
presented by Rogers (27). 

Combina tor ia l L ibra r ies and Molecula r Diversity. The rapid rise in recent 
years in the number of computational techniques applied to the design and analysis 
of combinatorial libraries needs little introduction. Suffice it to say that 
evolutionary algorithms have figured large in this application area. Indeed, the first 
published paper applying computers to library design appears to have been the 
genetic algorithm developed by Sheridan and Kearsley (31). In this section two 
other G A applications wi l l be briefly reviewed. 

The papers of Singh et al. (32) and Weber et al. (33) share a number of 
common features of interest. Both employ simple genetic algorithms for the design 
of combinatorial libraries; the former for a peptide library targeted at stromelysin, 
the latter using the Ug i reaction to generate products aimed to be active against 
thrombin. The most significant aspect of the algorithms described by these groups 
is that they used the measured biological activity of the products at each generation 
as the fitness function, thus demonstrating that the fitness function used by an 
evolutionary algorithm need not be a computationally-derived measure! 

Obviously, the use of experimental quantities w i l l mean an appreciable time lag 
between the generation of a population of individuals and its fitness evaluation, but 
the results from both studies were compelling and make this kind of approach 
worthy of further investigation. In the case of Singh et al. (32), potent stromelysin 
substrates were found after making only 300 out of a possible 64 mil l ion 
hexapeptides. Similarly, Weber's group located U g i products with low micromolar 
activity against thrombin after synthesizing only 400 out of a possible 160,000 
molecules (33). 
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Miscellaneous. Some other rational drug design applications are worthy of a brief 
mention. One of these is the G A S P program for pharmacophore elucidation and 
flexible molecular overlay, now a commercial product (34,35). Also of interest is 
the G E R M program for the generation of receptor models from sets of overlaid 
structures (36,37). A n exciting recent development is the C O N S O L V program that 
seeks to predict water locations within enzyme active sites (38). C O N S O L V is also 
of interest in that it represents the fruits of a collaborative effort between the 
Protein Structural Analysis and Design Laboratory and the G A R A G e (Genetic 
Algorithms Research and Applications) Groups of Michigan State University. In 
the field of 3D database searching, W i l d and Willett have employed a genetic 
algorithm for matching the molecular electrostatic potential field of a query 
molecule against those belonging to molecules in a compound collection (39). 
They also studied various parallel implementations of their genetic algorithm. A 
currently burgeoning application area for evolutionary algorithms is the assignment 
and refinement of N M R spectral data, for example in the F I N G A R (40) and 
G A R A N T (41) programs. Finally, a field of potential future relevance to rational 
drug design, the search for effective protein folding algorithms, has also seen many 
evolutionary algorithm applications (42). 

Obviously, this selection represents a small and somewhat subjective sample of 
the many evolutionary algorithm applications in the field of computer-aided 
molecular design. A n extensive bibliography is available on request from the 
author (email david-e.clark@rp-rorer.co.uk) or on the World-Wide Web at 
http://panizzi.shef.ac.uk/cisrg/links/ea_bib.html. 

Pros and Cons of Evolutionary Algorithms 

Having reviewed some applications of evolutionary algorithms in rational drug 
design, what are some of the pros and cons of this class of algorithm compared to 
other types? 

In their favour, evolutionary algorithms represent a methodological framework 
that is easy to understand and to work with. Most scientists have at least a passing 
familiarity with the biological mechanisms that underpin evolutionary algorithms 
and this aids the comprehension of their basic principles and operations. 
Evolutionary algorithms also allow a great deal of flexibility in their 
implementation and use. "Off-the-shelf implementations are available (usually 
free of charge) and can often be readily adapted for the problem in hand. 
Alternatively, as has been shown, it is possible to create applications that are 
extensively customized for a particular situation. The latter choice is likely to yield 
improved performance for the specific instance for which it has been customized, 
while the former framework wi l l be more transferable between applications. 

Evolutionary algorithms are also noteworthy for their robustness. In general, 
reasonable performance can be obtained without the expenditure of great effort in 
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parameter tuning, although obviously, optimal performance may require much 
work in this direction. A further beneficial aspect is that evolutionary algorithms 
are extremely amenable to parallelization and because the computationally 
demanding fitness evaluation step is decoupled from the rest of the algorithm, 
gains of speedups of almost 100% are to be expected when migrating to a parallel 
environment. 

O f most relevance to rational drug design, perhaps, is that evolutionary 
algorithms are characterized by their ability to cope with difficult or 
unconventional response (energy) surfaces. This is a characteristic shared with 
other heuristic algorithms such as simulated annealing (43) or tabu search (44). A n 
added advantage of evolutionary algorithms over these last two types of heuristic 
search, however, is the generation of a population of solutions from each run. This 
is particularly helpful in rational drug design problems where there is sometimes 
uncertainty as to the accuracy of the fitness function, in other words, how well it 
reflects the biological reality. In this instance, it is useful to see not just the top-
scoring solution but a whole range. 

The factors that weigh against evolutionary algorithms are two-fold. Firstly, 
they are inherently stochastic, which means that it is usually necessary to repeat 
runs several times with different random seeds to be sure of the results. This means 
that evolutionary algorithms wi l l always be at a disadvantage i f they are to be 
compared to a deterministic algorithm for the same purpose. Again, this underlines 
the need to consider carefully whether an evolutionary algorithm is an appropriate 
choice for the problem under consideration. However, in many cases, problems 
w i l l only be amenable to solution by some class of heuristic algorithm; in this 
situation, the stochastic nature of evolutionary algorithms obviously becomes less 
of a problem. Secondly, as mentioned above, for optimal performance a good deal 
of parameter tuning may be necessary. Furthermore, it is nearly impossible to 
guarantee that one has ever arrived at a set of optimal parameters, particularly i f 
they are coupled in some way. This is the so-called meta-optimization problem. 
However, again this is a difficulty shared with other heuristic search algorithms and 
so often it is not a large disincentive to the use of evolutionary algorithms. In 
addition, the use of self-adaptation, such as in E P D O C K , may help to ameliorate 
these parameter optimization problems. 

Future Directions 

This review has sought to present some of the current applications of evolutionary 
algorithms in rational drug design and to highlight strengths and weaknesses of the 
algorithms in general. In this section, a look to the future is attempted to see what 
directions might be taken in both the basic research into evolutionary computation 
and its application to C A M D problems. 
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It is to be expected that new application areas for evolutionary algorithms w i l l 
arise within rational drug design. One possibility is the use of evolutionary 
algorithms for data mining within the ever-increasing databases of information 
arising from combinatorial chemistry and high-throughput screening experiments. 
Genetic algorithms are already in use for this kind of task in other application 
domains and so might be expected to be useful tools for seeking trends and 
relationships in biochemical data. 

A s mentioned previously, evolutionary algorithms lend themselves well to 
parallelization. While this w i l l be most impressive on parallel architectures or 
distributed networks, the work of Jones et al. (21) demonstrates that using multiple 
subpopulations on a serial machine can lead to faster convergence and thus, greater 
efficiency compared to a single, monolithic population. As parallel machines 
become more widely available and techniques for distributed computing become 
more advanced, it is likely that more parallel applications of evolutionary 
algorithms wi l l emerge. 

The subject of self-adaptation is currently the subject of much interest in the 
field of evolutionary computation (2,3). The use of self-adaptive parameters is not 
limited to evolutionary programming and researchers are experimenting with self-
adaptive operators in genetic algorithms too. A different approach aiming to solve 
the same problem, that of parameter optimization, is meta-evolution. Meta-
evolution involves the use of one evolutionary algorithm to control a population of 
other evolutionary algorithms all with different parameter values. As these operate 
on a problem, it becomes possible over time to determine which are performing 
well and thus what are good sets of parameters. Meta-evolution clearly suggests the 
use of parallel architectures and this is being investigated in the D A G A - 2 program 
(45). Without doubt, as these methods develop, they wi l l begin to find their way 
increasingly into rational drug design applications. 

Another area of activity within the evolutionary computation community is that 
of developing the basic theory of evolutionary algorithms. To quote from (2), "we 
know that they work, but we do not know why"! As the theoretical foundations of 
evolutionary computing become firmer, it is to be expected that this w i l l help to 
provide better rules-of-thumb to guide implementations as well as improving the 
basic performance of the algorithms themselves. 

Some workers are beginning to find that rather than using evolutionary 
algorithms in isolation, improved results can be obtained by hybridizing them with 
other types of search or optimization algorithm (46-49). Indeed, a recent paper 
comparing heuristic search algorithms for docking showed that the performance of 
all the heuristic algorithms could be improved by hybridization with a local 
optimizer and/or another heuristic algorithm (50). Other hybridizations of 
evolutionary algorithms are already in existence in rational drug design 
applications; for instance, E P D O C K employs a local minimizer to refine the 
solutions generated by the evolutionary programming algorithm (24), and So and 
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Karplus's Genetic Neural Networks combines evolutionary programming with a 
neural network to develop Q S A R s (30). 

It is possible too that the future wi l l see more applications of the two other 
types of evolutionary algorithm mentioned in the introduction - evolution strategies 
and genetic programming. The latter is already starting to be applied to problems of 
interest to rational drug designers. For instance, the group working on C O N S O L V 
found that they obtained better results with genetic programming than with a 
genetic algorithm (57). Other genetic programming applications are given in 
(52,53). 

A s suggested earlier, it seems likely that the future w i l l see more collaboration 
between researchers in evolutionary computation and those seeking to apply the 
methods to rational drug design problems. This can only be of benefit to both 
parties, giving the former experience of challenging "real-world" problems which 
may perhaps stimulate new techniques or approaches while the latter gain access to 
the technical expertise of researchers steeped in the theory and practice of 
evolutionary algorithms. 

Finally, as evolutionary algorithms gain more widespread acceptance and 
validation, it seems inevitable that more commercial software products for rational 
drug design wi l l embrace them thereby adding to the list of those currently 
available (29,35,54). 

Conclusions 

This review has sought to survey the current status of evolutionary algorithms as 
applied to rational drug design. In general, the applications have met with 
considerable success, although not in all cases, underlining the importance of 
choosing the right algorithm for the problem and of being aware of the implications 
of the N o Free Lunch theorems (75). With these caveats in mind, it seems likely 
that as the field of evolutionary computation advances, it w i l l continue to find 
ready and successful application to the considerable problems encountered in the 
process of rational drug design. 
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Chapter 18 

Further Development of a Genetic Algorithm 
for Ligand Docking and Its Application to Screening 

Combinatorial Libraries 

Gareth Jones 1,5, Peter Willett 1 Robert C . Glen 2, Andrew R. Leach 3, 
and Robin Taylor 4 

1 Krebs Institute for Biomolecular Research and Department of Information 
Studies, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom 

2 Tripos Inc., 1699 South Hanley Road, St. Louis, MO 63144 
3 Glaxo Wellcome Medicines Research Centre, Gunnells Wood Road, 

Stevenage SG1 2NY, United Kingdom 
4 Cambridge Crystallographic Data Centre, 12 Union Road, 

Cambridge CB2 1EZ, United Kingdom 

We have previously reported the development and validation of the 
program GOLD (Genetic Optimization for Ligand Docking), an 
automated ligand docking program that uses a genetic algorithm to 
explore the full range of ligand conformational flexibility with partial 
flexibility of the protein. The validation of the algorithm exposed 
certain weaknesses, particularly in its handling of hydrophobic ligands. 
We describe here a number of modifications designed to overcome 
these shortcomings. Using the improved algorithm we have 
investigated the relationship between the program's scoring function 
and ligand activity and applied the algorithm to screening combinatorial 
libraries. 

Using lipase as a target, GOLD docked a library of carboxylic 
acids and amines extracted from the Fine Chemicals Database. By 
predicting the binding modes of product from the predicted dockings of 
reactants the problem is considerably simplified. The success of this 
approach was verified by comparing the prediction obtained by docking 
the component reactants with the result obtained by docking the 
product. The procedure was repeated using a second library of 
sulphonyl chlorides and amines. 

Prediction of small-molecule binding modes to macromolecules of known three-
dimensional structure is a problem of paramount importance in rational drug design 
(the "docking" problem). There have been many different approaches to solving the 
docking problem (1,2), including: deterministic approaches (3,4); simulated annealing 

5 Current address: Arena Pharmaceuticals, 6166 Nancy Ridge Drive, 
San Diego, CA 92121 

© 1999 American Chemical Society 271 
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(5); genetic algorithms (GAs , 6,7) and evolutionary prograrnming (8). G A s provide an 
evolutionary search paradigm that enables the rapid identification o f good, though not 
necessarily optimal, solutions to combinatorial optimization problems (9,10,11). This 
technique has proved remarkably successful in almost all areas of computational 
chemistry and molecular modeling, to which it has been applied (12). 

G O L D (6,13) is an automated ligand docking program that uses a G A to 
explore the full range o f ligand conformational flexibility. Conformational flexibility 
is encoded in the G A in binary bitstrings where the angle of rotation about each 
rotatable bond is encoded in a byte. In order that G O L D efficiently elucidates binding 
modes, hydrogen bonds have been directly encoded into the G A , using integer strings, 
such that each position on the string ecoded a particular ligand donor-hydrogen or 
acceptor while the value at that position encoded a complementary protein acceptor or 
donor-hydrogen. When decoding a G A chromosome least-squares fitting is employed 
to try and form some of these encoded hydrogen bonds. A simple scoring function is 
used to rank generated binding modes. This comprised a term for hydrogen bonding 
(which took account o f the fundamental requirement that water must be displaced 
from both donor and acceptor before a bond is formed); a pairwise dispersion potential 
between the protein and the ligand and a molecular mechanics term for the internal 
energy for the ligand. The program has been extensively evaluated on a large number 
of protein-ligand complexes (13). 

The validation studies o f G O L D revealed weaknesses in predicting the binding 
mode of hydrophobic ligands (75). Here, we describe a number of improvements, 
designed primarily to overcome this limitation. Using the improved algorithm a 
number of activity studies have been carried out and results on sets of influenza A 
neuraminidase and a-chymotrypsin ligands are presented. Finally, G O L D has been 
used to screen combinatorial libraries. Given the large size of combinatorial libraries, 
the selection of a small number of reactants or products for further study against a 
known target is both a demanding and important problem in rational drug discovery. 
Rather than enumerating a library and docking every library compound, we simplify 
the problem by docking only library monomers. The binding modes o f high affinity 
products can then be elucidated from the docked monomers. 

A knowledge of how G O L D works would be helpful for the first section of this 
chapter which deals with improvements to the program (see references 6 and 13). 
However, the sections on activity prediction and library screening can be read 
separately without any great understanding of G O L D . 

Extending the Test Suite. In (73) we reported the validation of G O L D on 100 test 
complexes extracted from the Protein Data Bank (PDB) (14). Shortly afterwards, one 
of us (RT) expanded this test suite to 134 complexes. Further expansion without 
including complexes very similar to those selected, or biasing the dataset towards 
peptidic ligands did not seem possible. Using the same subjective classification of 
Good (where all protein ligand interactions were correctly predicted), Close (the 
binding mode and all important interactions were elucidated), Errors (the prediction 
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was partially correct but had significant errors) and Wrong (where the predictioun was 
completely wrong) we obtained the results shown in Table I. Overall we achieved 
prediction rate o f 72%, with 96 complexes being in the Good and Close categories. 
A l l results can be viewed at http://www.ccdc.cam.ac.uk/prods/gold.htrnl. 

Table I. Results o f docking predictions on a dataset o f 134 complexes. The 
missing complex is 1 A C L , for which no binding mode could be elucidated. 

Subjective Number PDB identification codes 
Result 
Good 53 1ABE 1ACM 1AC0 1CBX 1C0Y 1CPS 1DBB 1DBJ 1FKG Good 53 1FKI 1HDY 1HEF 1HYT 1LST 1MDR 1MRK 1PBD 1PHD 

1P0C 1SRJ 1STP 1TPP 1ULB 1XIE 2 ADA 2CGR 2CHT 
2CTC 2PHH 2SIM 3AAH 3PTB 3TPI 4DFR 4PHV 7TIM 
8GCH 1AEC 1AHA 1ASE 1HSL 1BMA 1CIL 1FRP 2GBP 
1GLP 1LAH 1LPM 1MMQ 1MRG 1TRK 1TNL 1WAP 

Close 43 1BLH 1DIE 1DR1 1DWD 1EPB 1GHB 1GLQ 1IDA 1IVE Close 43 
1LDM 1PHA 1PHG 1RNE 1SLT 1TKA 1TMN 1XID 2DBL 
2PK4 2YHX 3CPA 3GCH 3HVT 4CTS 5P2P 6ABP 6RNT 
1APT 1AZM 4EST 1ATL 1BBP 1BYB 1CBS 1C0M 1FEN 
1HFC 1IMB 1LCP 1NC0 1TNG 1TNI 1TPH 

Errors 15 1BAF 1EAP 1ETR 1HDC 1LIC 1RDS 1R0B 6RSA 1ACK Errors 15 
2CMD 1CTR 2LGS 1LNA 1SNC 1UKZ 

Wrong 22 1AAQ 1ACJ 1DID 1EED 1ETA 1HRI 1ICN 1IGJ 1MCR Wrong 22 
IMUP 
2MCP 

2R07 
ICDG 

INIS 
ILMO 

ITDB 
ITYL 

2AK3 2MTH 2PLV 3CLA 4 FAB 

In (75) several flaws were identified in the algorithm. This extended 
verification confirmed these shortcomings, which were mainly related to the 
recognition of hydrophobic interactions, and we now describe a number of 
improvements that have been made to correct the algorithm. 

Improving the Algorithm 

Increased V D W Weighting. The fitness function used by G O L D comprised three 
main terms: a hydrogen bonding energy; a pairwise van der Waals steric energy 
between the protein and the ligand; and an internal energy term for the ligand. The 
total fitness score was the linear sum of these terms, with each term being equally 
weighted. During testing it was observed that there was insufficient weight given to 
large areas of hydrophobic contact and that there was insufficient probability of 
charged ligand groups being solvent accessible. This was attributed to an imbalance in 
the fitness function, with hydrophobic contact being undervalued relative to hydrogen 
bonding, since, while the van der Waals interaction between the protein and the ligand 
accounts for dispersive interactions, it fails to score for the favorable entropic effects 
o f water displacement. It was felt that this imbalace might be easily corrected by 
scaling the contribution the van der Waals energy between the protein and the ligand 
made to the fitness function by a weight. Using the results from the experiments in 
(75) each test system was examined in turn. The fitness scores of the 20 solutions 
were recalculated using a new trail weighting for the the van der Waals energy 
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between the protein and the ligand. The binding mode with the highest fitness score 
was then selected as a prediction. This procedure was repeated using a number of trial 
weights and a factor o f 1.375 was found to give the most correct predictions over the 
100 complexes. This new weight was then applied within the algorithm and proved 
successful at correcting the imbalance between hydrophobic and polar interactions 
within the fitness function. Several complexes such as 4 F A B and 1 A C J were now 
correctly docked by G O L D . The ability o f G O L D to dock polar ligands was 
unaffected. 

A s an alternative to increasing the van der Waals weighting an approximate 
surface area calculation was used to determine desolvation energies (75). However, 
this proved no more discriminatory than increasing the van der Waals energy 
weighting and was very time consuming. 

Shape Fitting. Another problem observed during testing was a systematic problem in 
placing hydrophobic groups in deep cavities. The chromosome encoding used in 
G O L D meant that the G A searched patterns o f hydrogen bonding motifs: the algorithm 
was thus directed to discover hydrogen bonding interactions, but found hydrophobic 
interactions by "accident". Moreover, given the tendency for bad bumps to occur as 
the ligand approaches deep cavities, cavity binding may actually have been 
discouraged. 

The chromosome encoding has now been extended to encompass hydrophobic 
interactions. A grid with inter-point spacing o f 0.25A was placed across the active 
site. A n augmented carbon probe atom was placed at each grid point and the van der 
Waals interaction between the probe and the active site measured. This probe atom 
had a van der Waals radius of 2.5 A and the physical properties o f an sp 3 carbon. If the 
interaction energy was less than -2.5kcal/mol then the grid point was considered to be 
a favorable position for ligand hydrophobic atoms and the point was labeled. Ligand 
carbons bonded to at least one hydrogen were considered to be hydrophobic and were 
also labeled. A new integer string was added to the chromosome which encoded 
possible hydrophobic interactions, such that the position on the string was a ligand 
hydrophobic atom label and the value on the string was a label o f a hydrophobic grid 
point. During least-squares fitting and the application of genetic operators this string 
was handled in an analogous fashion to the integer strings that encode for hydrogen 
bonding (as described in detail by Jones et al. (6)). 

This extension o f the chromosome encoding allowed G O L D to dock apolar 
ligands and ligands which did not form any hydrogen bonds to the protein, and 
removed the need for the small ligand model (75). The binding modes of complexes 
such as 1HRI and 2R07, which were originally incorrectly predicted, were now 
successfully elucidated, without any adverse effects being observed when docking 
hydrophilic ligands. 

Solvent Exposed Charged Residues. Another problem observed in the testing of 
G O L D was the binding of ligand groups to charged solvated residues. The exterior of 
a protein generally contains many charged solvated residues, such as lysines, arginines 
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and glutamic and aspartic acids. These residues, being highly solvated and mobile, are 
not normally favorable for ligand binding. However, with the G O L D algorithm such 
groups, being charged, are very attractive. A n approximate surface area algorithm was 
used to identify such residues. Using this algorithm the ratio o f surface areas o f the 
residue in the absence and presence of the rest of the protein was determined. If this 
ratio was greater than 0.5 then the residue was considered solvent exposed. Such 
residues had their hydrogen bonding energies recalculated using a water dielectric of 
78.5, which made such residues much less attractive to ligand binding. For example, 
the binding mode o f the ligand in 6 R S A was originally incorrectly predicted, with the 
ligand binding to a solvent exposed residue, but is now predicted correctly. 

Torsional Distributions. A s currently documented G O L D searches all single acyclic 
torsions over 360°. However, searches of small molecule crystallographic databases, 
such as the C S D (16), show that many common torsions are restricted. Figure 1 shows 
two common torsions and their distribution in the C S D . G O L D can now read such 
torsional distributions and search only those ligand torsional angles which are seen in 
small molecule crystals. B y default a small torsional library o f 24 common torsions is 
available, but the user can also use the library of over 200 torsions from the 
M I M U M B A program (17). 

Re-mapping the Chromosome. In the docking procedure described in (75) the least-
squares fitting process is applied in two passes. The chromosome is decoded to give a 
mapping in 3D space between points in the ligand and points in the protein active site. 
The first pass of least-square fitting is applied to all points, while the second pass is 
applied to close contacts from the first pass. Thus a significant portion of the 
chromosome w i l l not be used in performing the final least-squares fitting. In the 
improved docking algorithm the unused chromosome mappings are reset to the 
dummy value o f ' - 1 ' (that is, they are un-mapped). The crossover operator has been 
altered so that if, at a particular position, one parent has a dummy value and the other 
parent does not, the child w i l l always inherit the non-dummy value. These changes 
have the effect that a child is much more likely to inherit meaningful chromosome 
mappings than previously and this was reflected in improved fitness scores. 

Current Results on 100 Test Systems. The continued improvement of the algorithm 
has resulted in a superior rate o f prediction over the 100 test systems previously used 
to test our algorithm (75). Table II compares the root mean squared deviations 
( R M S D ) of G O L D predictions to the crystallographically observed binding mode 
obtained using the current algorithm with those previously reported (75). A s before, 
G O L D was run a number of times and the solution with the highest score was retained 
as a prediction. U p to 20 dockings were performed per test system. Due to the 
increased reliability and reproducibility o f the algorithm it was felt that it was not 
necessary to generate 20 G A solutions, as, in many cases all 20 predictions would be 
identical. So if, at any time, the best three solutions were all within 1.5A R M S D of 
each other docking was terminated. However, in at least two cases, i f the algorithm 
had run to 20 dockings a much better R M S D to the observed binding mode would 
have been obtained (previously the G A was always run 20 times). Examination o f the 
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c -^c' 
Acyclic II Acyclic X * H 
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Figure 1. Distributions for ester (on left) and alkyl torsions. 
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table shows that the new algorithm shows a clear improvement with 72% of test 
systems having an R M S D o f 2.0A or less and 81% having an R M S D of 3.0A or less. 

Table II. Current and previously reported results for G O L D on 100 P D B 
complexes listed in (75). 

RMSD (A) Total Sum Previous 
Total Sum Total 

<=0.5 11 11 8 
>0.5,<1.0 34 45 35 
>1.0, <1.5 15 60 55 
>1.5, <2.0 12 72 66 
>2.0, <2.5 7 79 68 
>2.5, <3.0 2 81 71 
>3.0 19 100 99 

Comparison of Fitness Score With Binding Data 

A s we have shown in validation experiments, G O L D is clearly capable of reproducing 
the binding mode o f many ligands with considerable accuracy. However, it would also 
be desirable i f the program were able to predict the activity o f ligands. For this reason 
the relationship between G O L D fitness scores and the activity of known ligands was 
explored for two test systems. 

Influenza A Neuraminidase. Activity and, where available, structural data for 
influenza A neuraminidase ( N A ) ligands was obtained (18-24). For many o f these 
compounds crystal structures were available (either publicly from the P D B , or as 
proprietary Glaxo Wellcome structures). The 34 compounds included 10 inactive 
molecules, which exhibited high structural similarity to some of the active compounds 
(Neil Taylor, Personal Communication). Using G O L D , each ligand was docked 10 
times (each docking comprised 100000 G A operations) into the active site o f N A and 
the solution with the highest G A fitness score retained. The results o f these 
experiments are shown in Table III. From the table it can be seen that, with the 
exception of the inactive B A N A ligands (18), G O L D always reproduced the observed 
binding mode. 

Figure 2 plots the relationship between observed IC50 values (logarithmic 
scale) and G O L D fitness scores. While the relationship is clearly not ideal there does 
appear to be a marked correlation and this is borne out by non-parametric statistical 
tests which show strong evidence of rank correlation (Spearman test r5=-0.65, 
/X0 .001 ; Kendall test, z=-0.48, p O . O O l ) . If we consider l O u M to be a cutoff for 
activity then there are 15 actives and 19 inactives in the dataset. The question arises as 
to whether the G O L D score can be used to predict activity. Using a score o f 74 or 
greater to indicate activity we obtain Table IV. From the table it seems that the G O L D 
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Figure 2. Plot o f G O L D fitness score against IC50 values for N A ligands. 
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Table III. Compound activities and Fitness scores for N A inhibitors. Where the 
crystal structure of the complex is available the PDB code (or Glaxo Wellcome 
structure id) and the RMSD between the GOLD prediction and observed binding 
mode are shown. Where no reference is given for a compound, the structure is 
proprietary. The compound id is that used in the reference. 

Compound Id IC50(pm) Fitness 
Score 

Crystal 
Structure Id 

RMSD Notes 

3a(27) 0.002 82 .02 4 
41 (20) 0.002 87 .39 4 
2a(27) 0.004 76 .99 gs0023 1.13 1 
2(27) 0.005 92 .96 gs0015 0.38 1 
4j (20) 0.005 81 .96 4 
3b (21) 0.012 75 .52 4 
5e 0.014 85 .34 4 
2b (21) 0.18 68 .93 4 
4(27) 0.32 91 .59 gs00154 0.32 1 
4g(20) 0.32 77 .78 4 
la (27) 0.5 74 .40 4 
DANA (19) 8.6 74, .73 lnnb 1.13 1 
DANA (18) 8.6 75 .20 l ivf 1.18 2 
EPANA (23) -10 78 .98 liny 1.25 1 
EPANA (23) -10 77 .78 linx 1.54 2 
4d (20) 12 76, .24 4 
la(27) 19 67 .97 4 
\(24) 20 64 .14 4 
2(24) >100 83 .10 5 
inactive4 >130 58 .86 4,6 
inactive8 >130 71 .94 4,6 
inactive 10 >180 59 .31 4,6 
inactive3 >210 66 .34 4,6 
inactive5 >270 61 .80 4,6 
inactive7 >390 72 .91 4,6 
inactive2 >500 75 .18 4,6 
inactive 1 >640 64 .80 4,6 
BANA105 (18) 750 44 .85 livd 2.55 3 
inactive6 >880 62 .74 4,6 
inactive9 >900 63 .13 4,6 
APANA (23) -1000 78 .43 linw 1.28 2 
N A N A (22) -1000 80 .66 2bat 1.21 2 
BANA106 (18) 10000 46 .39 live 2.30 2,3 
BANA108 (18) >20000 41 .03 live 2.84 2,3 

1. Subtype N9 crystal structure. 
2. Subtype N2 crystal structure. 
3. GOLD failed to predict B A N A geometries correctly as these compounds contain 

non-planar amide bonds. However, the position of the benzene ring and acid 
group were correctly predicted. 

4. Docked into the protein crystal structure of gs00023. 
5. Docked into the protein crystal structure of gsOO 155. 
6. Glaxo Wellcome inactives from assay data. These inactives have a high structural 

similarity to the actives. 
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score is a good indicator o f activity and it is most unlikely that this distribution could 
have arisen through chance (x2=15.27,/?<0.001, v=l) . 

Table IV . Counts o f predicted and observed activities for N A inhibitors. 

GOLD predicted activity GOLD predicted inactivity 
Active 14 1 

Inactive 5 14 

While this experiment appears successful, several shortcomings were exposed. 
The active conformations o f the N A N A (22) and P A N A (23) ligands differ in their 
ring conformations, which G O L D failed to discriminate. Additionally, inspection of 
the crystal structures shows that Glu276 is mobile, forming interactions with Arg224 
or with the ligand (20); account needs to be taken of protein flexibility for G O L D to 
score properly for this effect. 

a -Chymotryps in . The N A test suite contains a set o f polar ligands which G O L D is 
most adept at handling. In order to see i f the program was as successful with 
hydrophobic ligands, G O L D was used to dock a series o f 103 a-chymotrypsin 
inhibitors (25) using the P D B protein structure in 6 C H A (26). Since the ligands were 
very simple (most were near-rigid tricyclic hydrophobic compounds) each G A docking 
run only comprised 50000 operations. This allowed a 100% speed-up o f the algorithm, 
though at the expense o f the quality o f predicted binding modes. This reduced 
parameterisation was tested on the 100 systems used to verify G O L D (75) and good 
results were obtained (70 predictions being within 2.0A R M S D o f the crystal structure 
and 79 predictions being within 3.0A, though some loss of predictive quality was 
noted, especially for large and flexible ligands). Each ligand was docked three times 
into the active site ( i f the first two dockings were within 1.5A R M S D of each other 
then a third solution was not generated) and the solution with the highest fitness score 
retained. 

Figure 3 plots the observed Kj against the calculated fitness scores. Here the 
relationship is much poorer than that observed for the N A inhibitors. It is not clear i f 
this is due to failures in the fitness function or the inability to reproduce the correct 
binding mode (for which data is not available). The Kendall test indicates that there is 
a meaningful relationship between the rankings of fitness scores and Kj values (r=-
0.1495,^=0.033), while the relationship just fails to show statistical significance in the 
Spearman test (r.y=-.1909, p=0.065). While these results are poor, it is worth 
emphasizing that, due to its hydrophobic nature, this dataset represents a worst case 
scenario for G O L D . 

Comments on Act iv i ty Studies. It is worth noting that i f G O L D can successfully 
predict binding modes then there are a number of alternative approaches available to 
attempt to predict binding free energies accurately (e.g. 27). Finally, activity prediction 
requires an estimate o f both the entropic components to binding and the free energy 
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Figure 3. Plot of G O L D fitness score against K i values for a-chymotrypsin ligands. 
Two inactive outliers with very low fitness scores are not shown.  O
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difference between different molecules and these components are missing from the 
G O L D fitness function, though it would not be too difficult to account for the loss of 
torsional freedom in the ligand and protein (by including an appropriate term for each 
rotatable bond fixed on binding). 

Docking Combinatorial Libraries 

Combinatorial chemistry methods (28) are playing an increasingly important role in 
rational drug discovery. This section describes the use o f G O L D to dock 
combinatorial libraries. However, rather than enumerate a library and dock in all 
products, we dock in all monomers and elucidate the binding modes of high affinity 
products from the binding modes o f the monomers. The attraction o f such is method 
is obvious: given a library o f two monomer pools, one of size N and the other o f size 
M, we need only perform N+Mdockings, rather than NxM dockings. 

For this method to be applicable it is assumed that the binding mode of high 
affinity ligands can, in general, be reproduced by partitioning the ligand into fragments 
and docking the fragments. This approach is illustrated using the crystal structure o f 
methotrexate bound to dihydrofolate reductase ( D H F R ) ( P D B code 4DFR, 29), as 
shown in Figure 4. The ligand was split in two and both parts terminated with a 
methyl group. The two fragments were docked into D H F R using G O L D . 25 G A runs 
of 100000 operations were performed and the solutions for each fragment with the 
highest fitness scores are shown in Figure 4. The upper dark structure is the G O L D 
prediction for the pyridine moiety only, while the lower dark structure is the G O L D 
prediction for the binding mode o f the remainder of the ligand. Over all heavy atoms, 
the R M S D between the predictions for the two fragments and the crystallographically 
observed binding mode is 1.5A. Thus, in this case, it is clear that by docking 
fragments o f the ligand we can reproduce the observed binding mode o f the whole 
ligand to a fair degree of approximation. Further experimental evidence is provided by 
the S A R by N M R methodology where the binding modes o f fragment compounds 
were obtained by N M R and the fragments were linked to produce high affinity ligands 
(30). 

Some fragment docking methods rely upon this hypothesis that docking 
portions o f a ligand can be used to determine the binding mode o f the whole ligand 
(e.g. 57). However, it cannot in general be assumed that the binding mode of a ligand 
can be reproduced by fragment docking and such an approach would be undesirable 
for an accurate docking algorithm. However, the assumption is necessary in this case, 
where we are attempting to select a small number o f products from a large library. 

Experiments using a library of acids and amines. A set o f carboxylic acids and 
amines were extracted from the Available Chemicals Directory ( A C D , 32). This 
library comprised 426 acids and 105 amines. From these, three-dimensional structures 
in S Y B Y L mol2 file format (55) were generated using C O N C O R D (34). Atom-type 
checking software developed for use with the G O L D docking program was then used 
to ensure that all structures were correctly typed. Where appropriate, structures were 
manually corrected within S Y B Y L . The acid and amine reactants w i l l form products 
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Figure 4. The crystal structure o f methotrexate bound in D H F R is shown shaded 
by atom type. The upper dark structure is the G O L D prediction for the pyridine 
moiety only, while the lower dark structure is the G O L D prediction for the 
binding mode o f the remainder o f the ligand. 
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with an amide bond. Since the amide bond w i l l be present in every product, this group 
was formed in both the acids and amines and terminated with a methyl (i.e. each 
amine, RNH2, was converted to the corresponding acetylamino compound, 
R N H C O M e , and each acid, R / C O 2 H , to the corresponding methylamide, 
R ' C O N H M e ) . S Y B Y L scripts were used to automate this process (33). 

In order to test the method, lipase was chosen as an example target (active site 
coordinates were taken from the P D B structure 1 C R L , 55). Each reactant was docked 
into lipase three times to give three possible G O L D solutions. However, i f the first 
two G O L D solutions were within 1.0A R M S D of each other then the third solution 
was not generated. In general, most monomers were simple ligands and, for this 
reason, each G A run comprised only 50000 operations. 

Following this docking procedure there were 1076 G O L D solutions for the 
acid monomers and 270 G O L D solutions for the amine monomers. This docking stage 
took just under one CPU-week on an SGI R4400 processor. Each G O L D solution 
obtained for an acid monomer was compared with every G O L D solution for the 
amines. If the R M S D of all equivalent atoms in the amide linkage were within 1.5 A 
then the two monomers were merged to form a new structure. The merging involved 
deleting the amide linkage in the acid and the terminating methyl group in the amine, 
then connecting the acid to the amine. The van der Waals energy of this new structure 
was calculated using the Tripos force field. If this energy exceeded 500kcal/mol then 
the structure was rejected; otherwise, the new structure was considered to be a good 
prediction of the binding mode of the product formed from the two monomers. The 
comparison stage took 1.5 hours C P U on an SGI R4400 processor. 

Following the comparison stage a number o f predictions were obtained for the 
product binding modes. In many cases there were more than one prediction for the 
same product, since multiple binding modes were present for each monomer. If this 
were the case a fitness score for each product was obtained by summing the fitness 
scores of the component monomers. The product with the highest fitness score was 
then retained, while al l other predictions were rejected. In practice, it was found that, 
when there were many predictions for the same product those predictions were usually 
very similar (resulting from very similar G O L D predictions for the monomers). 

Table V summarizes the results of this experiment. From approximately 
300000 possible superpositions of G O L D solutions, the binding modes of 129 unique 
products with reasonable energy were determined. It is to be hoped that these products 
w i l l exhibit high affinity for the target. Since the enumerated library contains 44730 
products, this experiment resulted in considerable data reduction, providing a small 
number o f compounds for further study via modeling experiments or experimental 
assay. If required, further data reduction can be achieved by ranking the products 
using the G O L D fitness scores for the component monomers. In addition to the data 
reduction achieved in the products, data reduction has also been achieved in the 
number o f monomers. 
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Table V . Summary o f acid and amine library experiments. A l l C P U times are for 
an R4400 SGI processor. 

N o . Acids 426 
N o . Amines 105 
N o . o f available products 44730 
No . G O L D solutions for acids 1088 
N o . G O L D solutions for amines 280 
Total no. of possible superpositions 304640 
N o . of product superpositions found 311 
N o . of products following energy screen 237 
N o . of unique products 129 
N o . o f acids in products 34 
No . of amines in products 49 
C P U time to dock acids 124h 
C P U time to dock amines 33.7h 
C P U time for superposition and energy screen 1.5h 
Total C P U time 159h 

In this experiment the underlying assumption is that the binding mode o f a high 
affinity product can be predicted from the binding modes of the component monomers. 
While this assumption can only be strictly verified through experimental assays and 
crystallographic studies, some limited verification may be obtained by using G O L D to 
dock in a product. The predicted binding mode obtained using G O L D to dock the 
product directly can then be compared with the binding mode obtained by 
superimposing the predicted binding modes of the monomers. 

This verification procedure was applied to the 129 products described above. 
Firstly, good coordinates were produced for each product. These were obtained from 
the two component monomers with attached amide-bond linkages. The amide bond in 
one monomer was least-squares fitted to the amide bond in the other. The amide bond 
in one monomer and the terminating methyl groups in both monomers were deleted 
and the addition of a single bond then completed the product. Prior to docking the 
product was minimized using the M A X I M I N 2 module in S Y B Y L . 

The docking was done in two passes. Firstly, each product was docked into lipase 
using G A runs of 50000 operations to generate three G O L D solutions (if the first two 
solutions were within 1.0A R M S D then only two solutions were generated). The 
G O L D solution with the highest fitness score was taken as a predicted binding mode 
for the product. This prediction was then compared with the binding mode previously 
obtained by docking in the two monomers and an R M S D obtained for the deviation of 
heavy atoms. For those few cases where the R M S D was greater that 3.0A a second 
docking procedure was performed. The second docking comprised 10 G A runs of 
100000 operations. Again, the G O L D solution with the highest fitness score was 
taken as a predicted binding mode for the product. 
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This two-pass docking was performed in order to reduce C P U usage; ideally, 
all products would have been docked using 10 G A runs o f 100000 operations. The 
R M S D values obtained are shown in Table V I . It can be seen that in the vast majority 
of cases the binding mode obtained by docking the product is very similar to that 
obtained by docking the component monomers and superimposing them. Only 13% of 
products (16 compounds) have an R M S D in excess of 3.0A, indicating a significant 
difference in the binding modes obtained using the two methods. 

Table V I . A c i d and amine library. R M S D of direct predictions for product binding 
mode against product binding mode predictions from docked monomers. 

RMSD Total Percent 
Under 1.OA 40 31 
Under 2.0A 92 71 
Under 3.0A 113 88 

This verification stage was relatively time consuming, requiring 209 C P U 
hours (8 days and 17 hours) on an R4400 SGI processor. 

A n example of the results obtained for one product are shown in Figure 5. For 
clarity, only a few residues in the active site of lipase are displayed (colored by atom 
type) and only heavy atoms are shown. The predicted binding modes for acid 
monomer 2531 and amine monomer 70017 are shown as dark colored structures. It 
can be seen that the amide bond linkage occupies the same area of 3-D space. The 
predicted binding mode obtained by G O L D when the product (also present in the 
A C D , no. 248910) is docked into the active site is shown in the third structure (colored 
by atom type). It can be seen that the predicted binding mode of the product 
corresponds closely to that obtained by docking the two monomers. 

Experiments using a library of sulphonyl chlorides and amines. The procedure 
described above was repeated for a second library of sulphonyl chlorides and amines, 
which react to form products with a sulphonamide linkage. This library comprised 
204 sulphonyl chlorides and 105 amines extracted from the A C D (32). 

A s before, both monomer pools were prepared by adding the link group and 
terminating with a methyl group. In this case a sulphonamide bond linkage was used 
rather that an amide linkage. A s before both sets of prepared monomers were docked 
into lipase to generate 2 or 3 G O L D solutions per monomer. Following this, all 
sulphonyl chloride solutions were checked for overlaying sulphonamide linkages with 
all amine monomers. Duplicate products o f low fitness and products with high van der 
Waals energy were rejected. 

The results are summarized in Table VII . From the 150000 possible 
superpositions of G O L D solutions the binding modes of 190 products with reasonable 
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Figure 5. The predictions obtained by G O L D for acid 2531, amine 70017 and 
product (also available in the A C D , no. 248910) in lipase.  O
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energy were determined. Again the library docking methodology has resulted in 
considerable data reduction with 190 products selected from the 21420 available. 

Table VII . Summary of sulponyl chloride and amine library experiments. A l l 
C P U times are for an R4400 processor. 

N o . o f Sulphonyl Chlorides 204 
N o . of Amines 105 
No. of available products 21420 
No . o f G O L D solutions for sulphonyl chlorides 520 
No. o f G O L D solutions for amines 280 
Total no. o f possible superpositions 151200 
N o . of product superpositions found 369 
No . o f products following energy screen 384 
N o . o f unique products 190 
No . o f sulphonyl chlorides in products 66 
No. o f amines in product 24 
C P U time to dock sulphonyl chlorides 48.5h 
C P U time to dock amines 39.5 
C P U time for superposition and energy screen l.Oh 
Total C P U time 89h 

A s in the case o f acids and amides a verification procedure was applied. Good 
geometries were generated for the products and G O L D was used to predict their 
binding modes (using the same, two-stage docking procedure as previously). The 
comparison of binding modes in Table V I E shows the R M S D of heavy atoms between 
the binding modes predicted by docking the product and by docking the component 
monomers. The verification stage took 224 C P U hours on an R4400 SGI C P U . 

Table V I E . Sulphonyl chloride and amine library. R M S D of direct predictions for 
product binding mode against product binding mode predictions from docked 
monomers. 

RMSD Total Percent 
Under 1.OA 28 15 
Under 2 . 0 A 97 51 
Under 3 . 0 A 145 76 

Reasonable agreement is seen between the binding modes obtained using the 
two approaches, with half the products having an R M S D o f less than 2 . 0 A and 76% 
having an R M S D o f less than 3 . 0 A . Approximately one quarter o f the products show 
R M S D s in excess o f 3 . 0 A , indicating a significant difference in the two binding 
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modes. These results, while not too bad in themselves, show significant deterioration 
from those obtained using the library of acids and amines. The difference is probably 
due to the increased size and flexibility o f the sulphonamide linkage used here, 
compared with the rigid amide linkage used previously. Furthermore, the Tripos 
torsional potential used within G O L D is not parameterised for sulphonamide torsions 
(35). 

A n example of the results obtained is shown in Figure 6, which shows the 
predicted binding modes of sulphonyl chloride 7450, amine 174223 and product (also 
present in the A C D , no. 203426). 

Comments on Library Docking Experiments. It would appear that docking library 
monomers is an effective alternative to enumerating a library and then docking in all 
products. It is a particularly useful technique i f selection o f a small number of 
products is desired. 

This technique is especially appropriate when dealing with site-directed 
targeted libraries. In this case each monomer pool is targeted to a different part o f the 
active site. B y restricting docking to the appropriate part o f the active site G O L D can 
ensure that each monomer binds as expected. The method is easily extensible to 
libraries containing more than two monomer pools. However, it is expected that a 
large number of monomers would need to be docked before three or more monomers 
with superimposed linkage groups were found. Finally, this technique is not restricted 
to G O L D , but could be used with any docking program. 

Conclusions 

This paper documents the continuing improvements to G O L D . Measures have been 
taken to correct some problems experienced in earlier testing of the software and 
improved results have been observed on the test suite o f 100 P D B complexes. The 
new algorithm has shown some ability in predicting activity. Finally, a time-efficient 
mechanism has been adopted for the screening of combinatorial libraries. While the 
methodology is attractive and initial results are promising, the feasibility o f such an 
approach can only be truly verified by experimental assay and crystallographic study. 
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Figure 6. The prediction obtained for sulphonyl chloride 7450, amine 174223 and 
product (also available in the A C D , no. 203426) in lipase.  O
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Chapter 19 

Reduced Dimensionality in Ligand-Protein Structure 
Prediction: Covalent Inhibitors of Serine Proteases 
and Design of Site-Directed Combinatorial Libraries 

Daniel K . Gehlhaar, Djamal Bouzida, and Paul A . Rejto 

Agouron Pharmaceuticals, Inc., 3301 North Torrey Pines Court, La Jolla, CA 92037 

Structure prediction of ligand-protein complexes is greatly facilitated 
when the location of ligand functional groups relative to the protein is 
known. This situation arises in two applications of practical interest: 
when a covalent bond is formed between the ligand and the protein, and 
when a fragment of the ligand dominates the molecular recognition 
with the protein. In both of these cases, it is shown that the predicted 
structure corresponds to the experimentally observed structure with 
increased probability. Using this approach, a library of compounds is 
screened for potential inhibitors of dihydrofolate reductase and porcine 
pancreatic elastase; known inhibitors were ranked favorably in both 
cases. 

The computational prediction o f binding geometries o f compounds in a protein active 
site, termed the docking problem, is an important component in computer-aided 
structure-based drug design (1). The problem can be fruitfully approached with an 
energy function that is sufficiently accurate to discriminate between correct and 
incorrect binding modes and that is amenable to a conformational search method that 
can determine the lowest energy state of the complex, which defines the predicted 
binding mode. Early methods treated both the ligand and the protein as rigid bodies 
and the search was limited to optimizing the position and orientation o f the ligand 
within the active site, while more recent methods incorporate flexibility o f the ligand 
and limited protein flexibility (2-7). It remains a significant challenge because o f the 
large number o f degrees o f freedom and the need to calculate interaction energies, but 
is eased significantly when the number o f degrees of freedom is reduced. This can be 
achieved, for example, by fixing the conformation of the ligand in its bound 

2 9 2 © 1999 American Chemical Society 
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conformation, but in general this knowledge is not available prior to experimental 
determination o f the structure o f the complex. 

A n alternate method to reduce the number o f degrees o f freedom is to fix part 
o f the ligand within the active site o f the receptor, a simplification that is exploited in 
this paper for two special cases. In the first case, the ligand forms a covalent complex 
with the protein, and the location o f the ligand is constrained by this chemical bond. In 
the second case, the portion o f the ligand that is primarily responsible for molecular 
recognition, the anchor, is fixed within the active site. Assuming that the binding mode 
o f the anchor fragment is not affected, this approach, termed fixed anchor docking, 
allows the efficient evaluation o f various substituents. In both cases, the search space 
is significantly reduced compared to fully flexible docking simulations because the 
center o f mass degrees of freedom have been eliminated and the number o f binding 
modes are limited dramatically. We discuss the methodology employed for the 
docking simulations and discuss validation studies. In conjunction with a method for 
estimating the binding affinity o f the resulting complexes, we use this approach to 
search libraries o f compounds for covalent inhibitors o f porcine pancreatic elastase and 
to build a virtual site-directed library for dihydrofolate reductase. We demonstrate that 
known inhibitors o f porcine pancreatic elastase and a potent inhibitor o f dihydrofolate 
reductase, methotrexate, are identified using this method. 

Serine Proteases. The active site of many viral serine proteases, such as 
cytomegalovius protease and hepatitis C protease, are solvent-exposed and 
comparatively shallow (8-10). These proteases differ from enzymes such as H I V 
protease, which has a highly constrained binding site, and has been a successful target 
for structure-based design (11-13). In order to achieve high potency, noncovalent 
inhibitors o f viral serine proteases might need to be relatively large, consistent with the 
long recognition sequence of these proteases (14). Due to the binding energy provided 
by the covalent bond, inhibitors that form a chemical bond with the protein can be 
smaller than those that do not, while maintaining the desired potency. Such 
comparatively small compounds are desirable both for increased oral bioavailability 
and for ease o f synthesis, although the presence o f a reactive functional group may 
lead to non-specific reactions with other serine proteases and reactive oxygens, as wel l 
as complicate the delivery of these compounds. 

The activated serine oxygen can bond covalently with an electrophilic group 
v ia a tetrahedral intermediate (77), but the software commonly used for predicting the 
structure o f ligand-protein complexes does not take such interactions into account. 
While some docking software does allow the modeling o f covalent interactions (2), the 
user is required to place the ligand in the correct tetrahedral geometry relative to the 
protein, a limitation that makes the program unsuitable for searching large chemical 
databases. We describe a method for the fully automated and rapid flexible docking o f 
inhibitors covalently bound to serine proteases, combining an energy function 
specifically tuned for molecular docking with an efficient search engine based on 
evolutionary programming. 
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Site-Directed Combinatorial Libraries. Another application o f structure prediction 
methods in reduced dimensionality arises in the design o f combinatorial chemistry 
libraries, a field that is beginning to have significant impact on drug discovery (15,16). 
Combinatorial approaches can accelerate the speed o f research and increase the 
amount o f structure-activity data typically available by orders o f magnitude. Because 
o f the combinatorial explosion, however, the number o f compounds that in principle 
can be synthesized typically far exceeds the number that can be made, let alone the 
number that can be assayed in a reasonable timeframe. While considerable progress 
has been made in automatic synthesis and screening methods, smaller, targeted 
libraries solve many o f the problems associated with large generic libraries. In this 
approach, the library is biased towards features that promote molecular recognition. 
These features can be obtained from the sequence of known substrates (17), transition 
state mimics (18), or the three-dimensional structure o f the receptor (19,20). 

Combinatorial approaches and structure-based drug design approaches 
complement each other. The large number of compounds inherent in combinatorial 
methods reduces the need for precise estimates o f binding affinity, so critical i n 
traditional single compound design. A t the same time, constraints imposed by the 
structure o f the receptor can reduce significantly the size o f library that needs to be 
considered. Due to the combinatorial nature o f the synthesis, eliminating even modest 
numbers of monomers at each stage can have significant results. A library that consists 
o f a central core fragment with three attachment sites and 100 possible monomers at 
each site contains 10 6 compounds, at the limits o f current synthesis and technology. I f 
some fraction of the monomers / can be eliminated at each site, the size of the library 
scales down a s / 1 , where n is the number o f attachment sites. Hence, eliminating 75% 
of the monomers in this example with three attachment sites results in a library 
approximately 1% of the original size, wel l within the capability of current 
experimental methodologies for synthesis and screening. 

Methodology 

Energy Function. The energy function used to predict the structure o f ligand-protein 
complexes contains an intermolecular term for the interaction between the ligand and 
the protein binding site, and an intramolecular term for the conformation of the ligand. 
The intramolecular term consists o f the van der Waals and torsional strain terms o f the 
D R E I D I N G force field (21), and is used to differentiate between low- and high-energy 
internal geometries o f the ligand. The intermolecular potential is a pairwise sum o f 
piecewise-linear potentials (Figures l a and lb) between ligand and protein heavy (non-
hydrogen) atoms (7), with parameters depending on the type o f interaction and the size 
o f the atom. Ligand and protein heavy atoms are classified as hydrogen bond donors, 
acceptors, donors and acceptors (e.g. a hydroxyl oxygen), or nonpolar. Small (fluorine 
and metal ions), medium (carbon, oxygen, and nitrogen), and large (sulfur, 
phosphorus, chlorine, and bromine) atoms are assigned atomic radii o f 1.4,1.8, and 2.2 
A, respectively. These parameters were derived from interatomic distances observed in 
high-quality crystal structures, and then optimized. 
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Interatomic Distance Interatomic Distance Angle (degrees) 

Figure 1. (a) Functional form o f the atomic pairwise potential used for the 
hydrogen bonding (A=15.0, B=2.3, C=2.6, D=3.1, E=3.4, F=-4.0) and dispersion 
terms (B=0.93a, C = a , D=1.25 a , E=1.5 a, F=-0.4, where a is the sum o f the 
atomic radii o f the protein and ligand atoms) o f the intermolecular potential, (b) 
Functional form o f the atomic pairwise potential used for donor-donor and 
acceptor-acceptor repulsive interactions. A=15.0, B=3.2, C=6.0, F=1.5. (c) 
Scaling factor used to modulate the hydrogen bonding and repulsive terms based 
on the relative orientation of protein and ligand atoms. A l l units are A and 
kcal/mole.  O
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Each pair o f interacting atoms is assigned one o f three interaction types: a 
hydrogen bond interaction between donors and acceptors, a repulsive interaction for 
donor-donor and acceptor-acceptor contacts, and a generic dispersion term for other 
contacts. Both the hydrogen bond and repulsive terms are modulated by a scaling 
factor that imparts a crude angular dependence (Figure lc ) . The hydrogen bond angle 
for ligand acceptors is defined by the ligand atom, the protein donor atom, and its 
associated polar hydrogen, while for ligand donors, it is defined by the ligand atom, 
the protein acceptor and its neighbor. In both cases, the attractive region o f the 
potential is scaled. The angle for the repulsive term is defined by the ligand atom, the 
protein donor atom and its polar hydrogen for ligand donors, or, for ligand acceptors, 
the ligand atom, the protein acceptor and its neighbor. In this case, the long-range 
region o f the potential (between parameters B and C in Figure lb) is scaled. 

Search Engine. Evolutionary programming (22), modeled after natural selection 
where a population o f solutions competes for survival, has been effective in a variety 
o f optimization problems. In this study, the population encodes the dihedral angles for 
all single-bonded atoms, not including resonant bonds. These angles are initialized to a 
random value and allowed to vary during the optimization. 

The search process consists o f a fixed number of generation cycles, where in 
each cycle, the members o f the population are scored using the energy function 
described above. A subset o f the population is selected to be "parents" for the next 
generation, with the remainder discarded. Parents for the production o f "offspring" are 
selected in a stochastic tournament, wherein the energy o f each member o f the 
population is compared with a fixed number of randomly selected opponents. A win is 
assigned to the member with the lowest energy, and the number o f competitions a 
member wins is used to determine whether it survives into the next generation. 
Sufficient offspring are generated from the parent vectors through the addition o f 
Gaussian mutations, restoring the population to its original size and completing the 
generation cycle. Although it is possible to calculate the ideal standard deviation size 
for simple energy functions (22), they are not known for more complex response 
surfaces. Consequently, a self-adaptive strategy was used where the mutation sizes are 
allowed to vary (7), with selection pressure determining the ideal values as the 
simulation progresses. The best-scoring individual in the final generation is minimized 
using a conjugate gradient search and defines the predicted structure. 

Over the course o f the search, the repulsive component o f each pairwise 
potential i n the intermolecular scoring function is scaled linearly, starting at a low 
value and rising to its final value at the end o f the run. This allows the ligand to freely 
interpenetrate the protein early in the search, promoting population diversity and 
ensuring a more complete sampling o f the search space. For a ligand with ten rotatable 
bonds, a typical optimization involves approximately 70,000 energy evaluations and 
uses approximately 15 seconds o f C P U time on a Sil icon Graphics R10000 processor. 

Covalent Docking . While many chemical groups can serve as the site o f covalent 
attack, one may be interested in a particular group or may want to specifically disallow 
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attack at certain sites, such as protecting groups. To be of use for large database 
searches, the specification of ligand attack sites must be fully automated. 

A convenient representation o f the covalent attack sites is afforded by the CIF 
(Crystallographic Information File) format (23). A data definition was created that 
allows an atom to be specified in terms of its properties, such as element type, 
hybridization state, number of neighbors, and aromaticity, as wel l as the properties of 
its neighbors. The description is recursive, with each neighbor description having its 
own neighbor descriptions, so that any chemical group, regardless o f size, may be 
described. Each group description can be associated with a label string. For example, 
the attack site specification for a triflouromethyl ketone is given by 
"C,HeavyAtomNeighbors=3, Neighbor(0, BondOrder=2), Neighbor(C, Neighbor(F), 
Neighbor(F), Neighbor(F)), Neighbor(C)". This defines a carbon atom with three 
heavy atom neighbors; one neighbor is a double-bonded oxygen, another is a carbon 
which itself has three fluorine neighbors, and the third neighbor may be any carbon 
atom. 

Accurate modeling o f the tetrahedral state o f the covalent inhibitors is 
necessary for correct prediction o f the bound structure. Many inhibitors undergo 
substantial conformation changes upon formation of the covalent interaction, as the 
electrophilic atom changes from planar to tetrahedral geometry. These conformational 
changes can affect ligand atoms far away from the covalent interaction, especially i f 
the covalent attack occurs in a predominantly rigid region o f the ligand such as a ring. 
A summary o f the method used to generate the geometry about the tetrahedral center 
for reactive carbonyls is shown in Figure 2. Starting from a rough approximation o f the 
tetrahedral state, a proton is added to the carbon perpendicular to the plane defined by 
the carbonyl carbon and oxygen and another adjacent atom, reducing the carbonyl to 
an alcohol. A short minimization with the BatchMin program (24) using the all-atom 
Amber force field (25) and a distance-dependent dielectric is used to correct the 
geometry. The tetrahedral model is then aligned with the catalytic serine, fixing the 
distance between the serine oxygen and ligand carbon at 1.45 A , the bond angle about 
the serine oxygen at 109.5°, but allowing the serine C a - C P and C(3-0y bonds to rotate 
freely during the search. The process is then repeated for the opposite enantiomer as it 
is impossible to predict a priori which is most active. 

L i b r a r y Generation. The protocol for directed library design comprises four major 
steps: database querying, virtual library building, fixed anchor docking, and binding 
affinity estimation and ranking. It results in predicted binding modes and affinities for 
each compound in the library. Each substitution site in the central anchor is assigned 
its own reaction. In the first step, the database is screened for compounds that have at 
least one moiety that can be linked covalently to the central anchor fragment following 
some pre-specified chemical reactions. For very large databases, additional 
requirements based on simple molecular properties such as molecular weight can also 
be imposed. A l l fragments that satisfy the above constraints are linked to the central 
anchor motif, thus building a virtual library of compounds. The third step represents 
the primary filter, whereby the binding mode of all virtual molecules within the active 
site is predicted, subject to the constraint that the anchor motif is fixed i n its initial 
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Target compound 
Crude approximation of 
tetrahedral intermediate 

H O 

Bound state 

H 

R l 

Minimized tetrahedral 
compound 

Figure 2. Generation o f the tetrahedral intermediate structure from a carbonyl-
containing ligand. 
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position and orientation. After the structure o f each compound is predicted, the entire 
ligand is relaxed within the binding site using a conjugate-gradient minimization, and 
the final step is binding affinity estimation and ranking o f the compounds. 

Validation Studies 

Covalent Docking. To be useful for database searches, a structure prediction method 
for covalently bound inhibitors must discriminate not only between alternate binding 
modes, but also between the active and inactive stereoisomers. It must be relatively 
insensitive to small changes in the internal geometry of the ligand, so the same 
structure should result when a ligand is obtained from a high-resolution crystal 
structure or generated from a molecular modeling program. 

Five ligand-protein complexes containing covalently bound ligands were 
selected from the Brookhaven Protein Data Bank (PDB) (26): wheat serine 
carboxypeptidase (lbcr), human leucocyte elastase (leas and leau), and porcine 
pancreatic elastase (4est and 8est). Although many structures in the P D B are reported 
to contain a covalently bound ligand, a surprisingly small number had tetrahedral 
geometry at the site o f covalent attachment; many ligands were in a planar geometry. 
The lack o f a significant number of structures with the ligand in a tetrahedral geometry 
made validation o f our method o f generating the tetrahedral state difficult. We 
therefore chose a somewhat generic parameterization o f the geometry at the attack site, 
with a bond distance of 1.45 A and bond angle o f 109.5°. 

The five crystallographic complexes were chosen based on the quality of the 
structures and the size o f the inhibitors, which vary in size from 18 to 38 heavy (non-
hydrogen) atoms, and have between six and 13 rotatable bonds. Two of the structures 
( lbcr and 8est) undergo covalent attack at an aldehyde moiety, while the others have 
reactive diflouro- or triflouro-methyl ketone moieties. For each system, hydrogen 
atoms were added to the receptor and non-buried water molecules were removed. A 
total o f three sets o f 100 docking simulations were performed for each complex, one 
using the tetrahedral geometry given in the crystal structure, and one for each o f two 
stereoisomers o f a computationally generated ligand conformation. For the latter, the 
ligands were constructed in a molecular modeling program, minimized to convergence 
i n the Amber force field (14), and the tetrahedral geometry was generated using the 
method described above. N o specific knowledge about the crystal structures, such as 
torsion angles about nonrotatable bonds, was used to generate the modeled ligands. 
A structure prediction was defined to be successful when the root mean square 
deviation (RMS) o f the heavy atoms in the predicted structure was within 2.0 A o f the 
crystallographic structure. For all five complexes, the structure of the bound inhibitor 
was predicted correctly; the crystallographic binding mode o f the ligand had the lowest 
energy (Table I). Furthermore, correct and incorrect stereoisomers could be 
distinguished, even when the ligand was obtained by molecular modeling. For the 4est 
complex, an alternate binding mode was essentially isoenergetic with the correct 
binding mode, but where the phenyl moiety occupied a pocket that had been filled by a 
crystallographic water in the original protein structure. When the water was replaced, 
the success rate increased to 41%. 
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Table I: Comparison of Docking Simulations Using Three Different Tetrahedral 
Geometries at the Covalent Attack Site. 

Crystal Model Stereoisomer lb Model Stereoisomer 2 
PDB Entry Success Rate* Success Rate* Energy0 Success Rate* Energy0 

lbc r 78% 46% -63.5 12% -56.0 
leas 79% 49% -75.2 41% -55.5 
leau 61% 58% -74.7 30% -50.2 
4est 19% (41%) d 68% -86.2 31% -56.3 
8est 99% 88% -75.8 90% -66.9 

Tercent o f predicted structures within 2.0 A R M S of the crystallographic structure. 
Stereoisomer corresponding to the crystal structure. 
cEnergy o f the best-scoring docked ligand. 
dSuccess rate when a crystallographic water was replaced. 

Fixed Anchor Docking. We validated the fixed anchor docking method by 
performing multiple docking simulations o f five ligand-protein complexes with known 
crystal structures. The non-covalent complexes were methotrexate bound to 
dihydrofolate reductase (DHFR) (3dfr), Viracept bound to HTV-1 protease (27), biotin 
bound to streptavidin (lstp), FK506 bound to F K B P (28), and a tripeptide inhibitor 
bound to thermolysin (4tmn). 

For these simulations, a docking simulation is defined to be successful using 
the more stringent requirement that the predicted structure is within 1.5 A R M S o f the 
crystal structure. Two sets o f docking simulations, each comprising 100 trials o f each 
o f the above ligands, were performed. In the first set, a fully flexible docking 
simulation was performed, while in the second an anchor fragment o f the ligands was 
fixed in its crystallographic position (Figure 3). For the flexible docking simulations, 
the success rate is correlated with the number of degrees o f freedom of the ligand, 
while for fixed anchor docking, the X-ray binding mode is consistently reproduced 
(Table II). In the case of FK506, the conformation of the macrocycle is fixed in its 
crystallographic form, rationalizing its anomalously high success rate. A s expected, 
fixing the binding mode o f the anchor fragment substantially increases the rate o f 
successful prediction. 

Table II: The number of bonds allowed to rotate during the conformational 
search and the success rate for flexible and fixed anchor docking for five ligand-
protein complexes. ^ ^ ^ ^ 
Protein-ligand complex Rotatable bonds Flexible docking Fixed anchor docking 
Biotin/Streptavidin 5 99% 100% 
Methotrexate/DHFR 1 75% 100% 
F K 5 0 6 / F K B P 1 93% 100% 
Viracept/HIV-1 Protease 8 57% 100% 
4tmn/Thermolysin 13 44% 100% 
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Figure 3. Compounds used for fixed anchor validation are (a) biotin, (b) 
methotrexate, (c) FK506, (d) viracept, and (e) 4tmn. Atoms fixed during the 
docking simulation are indicated by stars; for FK506 , the entire macrocycle is 
fixed. 
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Database Screening 

In principle, the goal o f a computational database search is to accurately rank the entire 
set o f compounds in order o f affinity and thereby eliminate the need for experimental 
screening. To achieve this goal, the relative binding free energy of a large number of 
disparate compounds must be computed, a task that is beyond the capability o f current 
methodologies. A s a result, computational database screenings typically focus on the 
more limited goal o f increasing the likelihood o f finding an active compound in an 
experimental screen o f a subset o f the database, as compared to random. A seeded 
database experiment, where a known inhibitor is added to an otherwise arbitrary 
database, can be used to assess the effectiveness of the computational procedure by 
considering the relative ranking of the known inhibitor. 

Covalent Inhibitors. To test the effectiveness o f finding active covalent inhibitors 
from a database, the algorithm was used to screen a subset o f the Available Chemicals 
Directory ( A C D ; M D L Information Systems, San Leandro, C A ) for inhibitors o f 
porcine pancreatic elastase (4est). This system was chosen because o f the high 
resolution o f its crystallographic structure (1.6 A), the well-defined binding site, and 
the existence of a large inhibitor. Approximately 25,000 A C D compounds were 
screened, each with between zero and twelve rotatable bonds, twelve and forty heavy 
atoms, and at least one aromatic ring. Covalent attack was allowed for non-aromatic 
ketones and esters, with the exception o f protecting groups, such as carbobenzoxy. 
While not all o f these ketones are sufficiently activated to form a covalent complex, 
they can be modified to a more active form, and hence these compounds represent a 
diverse set o f potentially reactive groups. The known inhibitor was also included as 
part o f the search. 

After the structure of the bound complex was predicted, a number o f screens 
were imposed to eliminate compounds with characteristics that are unlikely to be 
found in ligand-protein complexes (Figure 4). These include large movement o f the 
serine oxygen upon binding (over 0.5 A), gross close contacts with the binding site (at 
least one non-hydrogen bonding pair o f heavy atoms with a 30% or greater van der 
Waals overlap), and a high desolvation penalty. The structures that passed these 
screens were clustered according to their predicted binding free energies, resulting in 
5,858 unique structures with a favorable binding energy (Figure 5). The desolvation 
penalty and the predicted binding free energies were computed using a modification 
and extension (29) o f the L U D I scoring function (30) that includes short-ranged 
repulsive interactions and a term to describe hydrogen bonding geometry (57). The 
known inhibitor was ranked in the top one percent o f all compounds that satisfied the 
screening criteria, and in the top one quarter o f one percent o f all compounds in the 
initial database. In addition, the correct stereoisomer and binding mode for this 
compound were selected. A number o f compounds chemically unrelated to the known 
inhibitor were found, some o f which form favorable hydrogen bonds in the active site 
(Figure 6). None o f these compounds have been tested for activity against the enzyme. 
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25,618 A C D compounds 

Protein structure 

Structure 
prediction 48,344 ligand-protein complexes 

(6,043 attack sites x 2 isomers x 
4 predicted structures) 

21,498 structures with no 
severe close contacts 

Filter out heavy-
atom close contacts 

(30% threshold) 

Serine Oyhas 
moved 0.5 A 

or less 

34,694 structures with 
reasonable serine 

Qy position 

Binding affinity prediction 
and desolvation energy screen 

16,465 structures 
without severe 

desolvation penalties 

5,858 unique compounds 
with predicted binding 
energy < 0 kcal/mol 

16,465 structures 
without severe 

desolvation penalties Extract structure with 
best predicted binding 

5,858 unique compounds 
with predicted binding 
energy < 0 kcal/mol Extract structure with 

best predicted binding 

Figure 4. Summary o f covalent inhibitor database search processing and results. 
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Figure 5. Distribution o f predicted binding affinities for the covalent inhibitors. 
The relative position o f the tripeptide inhibitor 4est is indicated.  O
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(a) 
S E R 195 

G L Y 1 9 3 | ^ i s T ^ 
^ N H H 

— O H a ! o« 

\ V A L 2 1 6 

T H R 4 1 H 

HIS 57 1.4 

o 
H V 

o 

S E R 195 

G L Y 1 9 3 | 
~ N H H V A L 2 1 6 

— O H 
T H R 4 1 

- N H 

Figure 6. Hydrogen-bond interactions between the active site o f porcine 
pancreatic elastase and (a) inhibitor 4est, (b) a compound identified from the 
database search, (c) a second compound identified from the database search. The 
range o f the hydrogen bonds, indicated by dashed lines, is between 2.5 and 3.4 A. 
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Figure 6. Hydrogen-bond interactions between the active site o f porcine 
pancreatic elastase and (a) inhibitor 4est, (b) a compound identified from the 
database search, (c) a second compound identified from the database search. The 
range o f the hydrogen bonds, indicated by dashed lines, is between 2.5 and 3.4 A.  O
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Site-Directed Combinatorial Library Design. The protocol was used to design a 
site-directed combinatorial library for dihydrofolate reductase ( D H F R ) (32), a popular 
test case for computational methods for structure prediction and binding affinity 
estimation. Methotrexate is an unusually high-affinity inhibitor o f D H F R and as such 
is a good inhibitor for validating new methods. While identification o f methotrexate is 
a necessary condition for a useful computational screening protocol, it does not 
guarantee success in all cases, since lead compounds are not always highly potent. 

Methotrexate contains a pteridine ring whose structure is predicted consistently 
within 0.5 A o f its crystallographic binding mode. This high consensus suggests that 
the pteridine is essential for molecular recognition and can be considered an anchor 
motif for D H F R . Given this anchor fragment, direct alkylation was chosen for the 
attachments o f substituents to the pteridine ring. The A C D was restricted to 
compounds with molecular weight less than 250 and which contain an amine group 
with at least one hydrogen and one heavy atom neighbor that is part o f an aromatic 
group. From the 7,256 compounds obtained, a virtual library of 7,677 compounds was 
generated, all o f which contain the pteridine motif. The number o f compounds in the 
library is larger than the number of compounds retrieved from the database because 
some compounds had multiple sites where the reaction could take place. 

A series o f ten docking simulations was performed for each compound, 
keeping the pteridine ring fixed within the D H F R active site. A l l structures with 25% 
or greater heavy atom overlaps with the active site atoms were discarded, and the 
binding affinity o f the remaining molecules was estimated. A l l the compounds with a 
large predicted desolvation penalty were removed. O f the 7,677 compounds in the 
virtual library, only 516 satisfied all the screening criteria, 7% o f the original library. 
A s anticipated, methotrexate is predicted to have the best binding energy, near -12 
kcal/mol (Figure 7). In addition to methotrexate, a number o f other compounds were 
generated that form good hydrogen bond interactions within the active site (Figure 8). 

Conclusion 

Reducing the dimensionality o f the conformational space in ligand-protein structure 
prediction reduces the computational complexity o f the problem and can lead to 
significantly improved prediction. Often, restricted mobility can only be achieved by 
making strong approximations regarding the nature o f the binding process. There are 
however, at least two special cases where the dimensionality is reduced without need 
for such assumptions. In ligand-protein complexes with a covalent bond, the restriction 
is imposed by the requirement that the chemical bond be formed between specific 
ligand and protein atoms. We have demonstrated that for such systems, the crystal 
structure o f ligand-protein complexes can be reproduced with high fidelity, and that a 
known inhibitor o f the porcine pancreatic serine protease elastase can be identified 
from a database of random compounds that contain reactive functional groups. 
Furthermore, methotrexate is identified as a potent inhibitor o f D H F R when seeded in 
a database o f amines that can react with the pteridine central core. This method can 
reduce the size of combinatorial libraries, and, in conjunction with more sophisticated 
selection o f reactant molecules, can aid in the generation o f site-directed libraries (33). 
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Figure 7. The binding affinity distribution for the virtual library o f compounds 
generated using the pteridine core in D H F R .  O
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Figure 8. Hydrogen-bond interactions between the active site o f D H F R and (a) 
methotrexate, (b) a compound identified from the database search, (c) a second 
compound identified from the database search. The range o f the hydrogen bonds, 
indicated by dashed lines, is between 2.5 and 3.4 A. 
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Chapter 20 

Development and Validation of the EVA Descriptor 
for QSAR Studies 

David B. Turner 1, Peter Willett 1, Allan M. Ferguson 2, and Trevor W. Heritage 2 

1 Krebs Institute for Biomolecular Research and Department of Information 
Studies, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom 

2 Tripos Inc., 1699 South Hanley Road, St. Louis, MO 63144 

QSAR models are of great importance in the rationalisation and pre
diction of the relative bioactivities of sets of compounds. Recently, 3D
-QSAR techniques, such as CoMFA, have proved to be an effective 
means of correlating shape-related features with bioactivity, provided 
that a suitable relative alignment of the structures concerned can be 
found. Here we describe the E V A QSAR method. E V A , which is based 
upon IR-range vibrational frequencies, provides an alignment-free 
methodology and is shown to produce statistically robust QSARs com
parable in most cases to results obtained with CoMFA. The method has 
been extensively validated on eleven different data sets. A brief dis
cussion of conformational sensitivity is given together with an evalua
tion of the possibilities for model interpretation. We also report on
going work centred upon using a genetic algorithm to provide models 
with enhanced predictivity over "classical" E V A QSAR. 

Since the advent of classical Q S A R techniques, exemplified by Hansen (%), there has 
been considerable progress in the development o f molecular descriptors and 
chemometric techniques for use in such studies. The development of 3 D - Q S A R 
techniques (2) that attempt to correlate biological activity with the values of various 
types of molecular field, for example steric, electrostatic or hydrophobic, has been of 
particular interest (3-5). The original, and most well-known of the 3 D - Q S A R tech
niques is Comparative Molecular Field Analysis (3) ( C o M F A ) which uses steric and 
electrostatic field values calculated at the intersections of a three-dimensional grid 
surrounding the structures in the data set. A major limitation of C o M F A , and most 
other 3 D - Q S A R techniques, is the dependency upon the relative orientation of the 
molecules in the data set (6,7). Despite efforts to improve the efficiency of the align
ment process (7-10) the selection o f the molecular alignment is regarded as the major 
variable in the analysis. These problems are further exacerbated when the conforma
tional flexibility of the molecules in the data set is considered. 

312 © 1999 American Chemical Society 
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There is, therefore, considerable interest in the development of new descrip
tions of molecular structure that do not require the alignment of molecules, but that 
retain the 3D and molecular property information encoded within molecular fields. 
Alternative descriptions of molecular fields than those used in C o M F A or molecular 
surface properties, for example methods based on autocorrelation vectors (11), mo
lecular moments (12), or M S - W H I M descriptors (13), may provide effective orienta
tion-independent descriptions of molecular structure. In this chapter we review a 
novel descriptor of molecular structure, known as E V A (EigenVAlue descriptor), that 
is derived from calculated infra-red (IR) range vibrational frequencies. A s discussed 
later in this chapter, E V A has been found to yield robust Q S A R models that are, for 
the most part, statistically comparable to those derived using C o M F A , with the advan
tage that E V A does not require structural alignment. 

Rationale 

During the late 1980's workers at Shell Research Limited (14) reasoned that a signifi
cant amount of information pertaining to molecular properties, in particular biological 
activity, might be contained within the molecular vibrational wavefunction, of which 
the vibrational spectrum is a fingerprint. The E V A descriptor is thus derived from 
normal co-ordinate EigenVAlues (i.e. the vibrational frequencies) that are either calcu
lated theoretically or extracted from experimental IR spectra. Typically, a classical 
normal co-ordinate analysis (15) ( N C A ) is performed on an energy minimized struc
ture, and the resulting eigenvalues represent the normal mode frequencies from which 
the E V A descriptor is derived. The associated normal coordinate eigenvectors (i.e., 
the vibrational motions) are not used within the E V A descriptor. The force constants 
upon which a normal co-ordinate analysis is dependent may be determined using a 
molecular mechanics, semi-empirical, or ab initio quantum mechanical method. The 
accuracy of the calculated vibrational eigenvalues is, therefore, determined entirely by 
the quality of the force constants applied or derived. 

Determination of the E V A Descriptor 

Using the standard Cartesian co-ordinate system as a basis for describing the dis
placement of an atom from its equilibrium position in a vibrating molecule requires 
3N coordinates for a molecule containing N atoms. Three of these coordinates de
scribe rigid-body translational motion, and a further three describe rigid-body rota
tions. Thus, in the general case for a molecule of N atoms there are 3N-6 vibrational 
degrees of freedom, or 3N-5 for a linear molecule such as acetylene (only two coordi
nates are required to fix the orientation). The number of vibrational degrees of free
dom is equivalent to the number of fundamental vibrational frequencies (normal 
modes of vibration) of the molecule. Whilst each of these fundamental vibrations can 
be calculated, they may or may not appear in an experimental IR absorption spectrum 
due to symmetry considerations, i.e. they may have zero (or close to zero) intensity 
(15). 

Thus, in order to derive the E V A descriptor, each structure is initially charac
terized by 3N-6 (or 3N-5) vibrational modes. In all but the special case where the 
molecules in the data set contain the same number of atoms it is not possible to com-
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pare the vibrational frequencies directly. This so-called dimensionality problem does 
not arise during a C o M F A analysis because the molecular fields arising from each 
molecule are calculated across a fixed set of lattice points; this would be an issue if, 
for example, one wanted to compare directly the atomic point charges from which the 
electrostatic fields are derived. Furthermore, even in cases in which it is desired to 
compare molecules that do contain the same number of atoms, and hence the same 
number of vibrational modes, it is difficult to establish which vibrations are directly 
comparable between molecules; this problem arises from inherent and effectively 
indeterminate contributions made by individual atoms to a given vibrational mode. 

In E V A , the dimensionality of the descriptor is unified across the entire data 
set by a three-step procedure that involves transformation o f the sets of vibrational 
frequencies onto a scale where they are directly comparable (i.e., a fixed-dimensional 
scale). In the initial step of this standardization process the frequency values are 
projected onto a bounded frequency scale (BFS) with individual vibrations represented 
by points on this axis. The bounds chosen for the B F S of 1 and 4,000 cm' 1 encompass 
the frequencies of all fundamental molecular vibrations and match the range observed 
for experimentally-derived IR spectra. The second step in the standardization process 
requires that each calculated frequency is characterized in terms of a kernel o f fixed 
height, width, and shape. Each of the calculated vibrations is weighted equally during 
this process. The resulting value associated with each of the calculated vibrations 
permits the proportion of overlap of vibrations to be determined, and may be consid
ered analogous to, but in no way representative of, peak intensity. Infra-red intensity 
information is not used in the generation of the E V A descriptor and, as explained 
below, the technique is not intended to simulate experimental IR spectra. 

In practice, in the second step a Gaussian kernel o f fixed standard deviation (a) 
is placed over each vibrational frequency value for each structure, resulting in a series 
o f 3N-6 (or 3N-5) identical, and overlapping Gaussians (Figure 1). The value o f the 
E V A descriptor, EVAX, at any chosen sampling point, x, on the bounded frequency 
scale is then determined by summing the amplitudes o f each and every one o f the 3N-
6 (or 3N-5) overlaid Gaussian kernels at that point: 

z'=l aV2?i 
th 

where / , is the / frequency for the structure concerned. 

It is important at this stage to reiterate that the purpose o f the above E V A 
smoothing procedure is not an attempt to simulate the infra-red spectrum of the mole
cule of interest, since the transition dipole data is ignored, but rather it is to provide a 
basis upon which vibrations occurring at slightly different frequencies may be com
pared to one another. The Gaussian function applied to define peak shapes adds a 
probabilistic element in that the peak maxima are centered at each of the calculated 
frequency values (/,) and thus these points are taken to be the most probable values o f 
the respective frequencies. A n E V A descriptor sampled at a point for which x * ft is 
thus considered to be a less probable value of the frequency. In such cases, the 
corresponding contribution of / , to the final value of the E V A descriptor at point x 
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(EVAX) w i l l be less than the maximum possible contribution. To a certain extent, this 
behavior of the E V A descriptor reduces the dependency of the final Q S A R model on 
the accuracy of the original calculated vibrational frequencies, which are sensitive to 
the molecule geometry optimization criteria and to the theoretical approximations or 
empirically based parameters of the chosen modeling paradigm (whether quantum, 
semi-empirical or molecular mechanics). Furthermore, and as discussed in detail 
below, this behavior has implications for the sensitivity of the descriptor to molecular 
conformation, in that small changes in vibrational frequencies arising from conforma
tional changes may have insignificant effects on the resulting E V A descriptor values. 

In the third, and final, step of the data standardization process the E V A func
tion is sampled at fixed increments of L cm"1 along the B F S , giving the 4,000/Z, values 
comprising the E V A descriptor. Typically, a descriptor set is derived using a Gaus
sian standard deviation (cr) term of 10 cm" 1 and a sampling increment (L) o f 5 cm" 1, 
giving 800 descriptor variables. A s is the case with C o M F A , the dimensionality of the 
E V A descriptor is much larger than the number of compounds in a typical Q S A R data 
set and thus data reduction methods, such as Partial least squares to Latent Structures 
(16) (PLS) or Principal Components Regression (PCR), are applied to search for 
robust correlations with biological activity data. For most molecules of interest to a 
medicinal chemist geometry optimisation and normal mode calculation is the time-
limiting step. However, i f molecular mechanics methods are used this is only liable to 
take about a minute per structure depending mainly upon N and the hardware avail
able. Therefore, whilst slower than C o M F A field calculations, the time needed for 
frequency calculations need not be prohibitive for Q S A R datasets o f typical size. 

Applications of the E V A Descriptor in QSAR/QSPR Studies 

One of the first demonstrations in the public domain of the regressive modeling ca
pability of the E V A descriptor was obtained in a Q S P R study (17) using Cramer's 
B C D E F data set (18). The data set consists of measured \ogP values for a highly 
heterogeneous set of 135 small organic chemicals, ranging from poly cyclic aromatics, 
such as the highly lipophilic phenanthrene (log? = 4.46), to small hydrophilic moie
ties, including methanol (logP = 0.64). The E V A descriptors were derived using a 10 
cm"1 Gaussian <r term and a sampling increment (L) o f 5 cm" 1 based on normal co
ordinate frequencies calculated using the A M I (19) Hamiltonian in the M O P A C (20) 
semi-empirical M O program. These parameters gave an E V A descriptor consisting of 
800 variables per structure, which were regressed against the \ogP values using P L S . 
A regression equation based on only five P L S latent variables, that explained 96% of 
the variance in the log/* values, was obtained in this way. Fu l l leave-one-out cross-
validation of this data set yielded a crossvalidated-r2 (i.e. q2) of 0.68. This model was 
then used to predict the \ogP value for a test set of 76 "unseen" chemicals, resulting in 
a predictive r of 0.65. This study demonstrates the value of E V A as both an explana
tory and a predictive tool, and, in addition, highlights one of its key advantages over 
3D Q S A R techniques such as C o M F A . In cases, such as this, where no intuitive 
alignment of the data set structures exists, it is very difficult or even impossible to 
apply C o M F A in a meaningful way, but with E V A no such complexity exists. Fur-
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thermore, bulk properties such as logP have no orientation dependence and thus any 
attempt to introduce such a dependency for Q S A R purposes is entirely arbitrary. The 
diversity of structures exemplified in this data set also suggests that E V A may be 
applied to the analysis o f diverse sets o f compounds rather than just to congeneric 
series, which is a limitation for most alternative descriptors. 

In subsequent studies (21,22) the general applicability of the E V A descriptor in 
Q S A R studies has been investigated in detail using eleven data sets exhibiting a range 
of biological end points (Table I). 

Usinj* E V A descriptors derived from A M I modes, good P L S models (as 
judged by q scores) can be obtained for nine of the eleven data sets. The exceptions 
to this are the oxadiazole (23) and biphenyl (24) data sets for which, at best, only poor 
models can be obtained. It is important to remind the reader that although the E V A 
Q S A R models presented in Table I are satisfactory, they are based solely upon the 
default E V A descriptor parameters (a = 10 cm" 1 and L = 5 cm"1). Additional studies 
(21,22) have been performed in which the effect o f changes to these parameters on the 
quality o f the final Q S A R models has been investigated and for nearly all o f the data 
sets listed there exist values of a that give rise to superior P L S models. A range of a 
values should therefore be investigated prior to settling on a final model. A protocol 
recommended by Turner et al (21) suggests that a a value of 10 cm"1 is a reasonable 
starting point for a Q S A R study and thereafter, i f satisfactory results are not achieved, 
to supplement this with analyses based on a terms of 5, 25, and 50 cm" 1. In addition, 
Table I lists analogous results for these datasets for which A M B E R (25) molecular 
mechanics was used for geometry optimisation and to calculate normal mode fre
quencies. For the most part the A M B E R - b a s e d E V A Q S A R models give poorer 
results than those obtained with M O P A C A M I . 

A useful benchmark for determining the effectiveness of the E V A descriptor in 
Q S A R studies is to compare its statistical performance and model characteristics with 
analogous C o M F A model for the same data sets. A key limitation in all such com
parative studies (21,22) is that the data sets have been selected because a good, pub
lished C o M F A model exists. This, therefore, may lead to significant bias in favor of 
the C o M F A technique, but none-the-less the results do provide interesting insights 
into the nature and scope of the E V A descriptor. 

Examination of Table I shows that, at least in terms of the q2 scores, the E V A 
descriptors provide roughly equivalent correlations as C o M F A for the cocaine (26), 
dibenzofuran (24), dibenzo-/?-dioxin (24), piperidine (21), sulphonamide (21) and 
steroid data sets (3). Although not as high as C o M F A , good predictive correlations 
are also obtained using E V A for the p-carboline (27), muscarinic (28) and nitroe-
namine (21) data sets. The two cases where E V A performs poorly, the oxadiazole 
(23) and biphenyl (24) data sets, also yield the poorest C o M F A results, although 
statistically significant correlations (q2 « 0.5) are obtained with C o M F A . 

The robustness of E V A P L S models has been extensively tested by Turner et 
al (21,29), both in terms of randomization permutation testing (23) and the ability of 
the models to make reliable predictions for test chemicals. Using the standard steroid 
data set from the original C o M F A study (3), but with structures corrected according to 
Wagener et al (10), a predictive-r 2 value of 0.69 is obtained for the ten previously 
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T A B L E I. Summary of E V A QSAR analyses for different sources of normal co
ordinate frequencies, using default E V A descriptor generation parameters 
(a = 10 cm"1, L = 5 cm'1) and comparison with C o M F A . 8 

AMBER MOPAC AMI CoMFA 
(both fields) 

Datasetb 2 
r 

2 
q r2 2 

q r2 

p-Carbolinesc(41) 0.29 (6) 0.97 0.50 (6) 0.97 0.68 (4) 0.89 

Biphenyls (14) 0.16(1) 0.72 0.28 (2) 0.90 0.49 (3) 0.87 

Cocaines (13) 0.57 (2) 0.91 0.49 (2) 0.95 0.59 (4) 0.88 

Dibenzo-p-dioxins (25) 0.48 (2) 0.85 0.68 (2) 0.88 0.66(1) 0.80 

Dibenzofurans (39) 0.61 (1) 0.74 0.78 (4) 0.97 0.72 (6) 0.85 

Muscarinics (39) 0.42 (3) 0.88 0.53 (4) 0.95 0.59 (4) 0.84 

Nitroenamines (17) 0.47 (2) 0.86 0.49 (3) 0.93 0.84 (3) 0.96 

Oxadiazoles (23) <0 - <0 - 0.51 (2) 0.85 

Piperidines (137) 0.71 (5) 0.84 0.76 (4) 0.84 0.73 (3) 0.80 

Steroids (TBGd) (21) 0.42 (5) 0.99 0.70 (4) 0.98 0.62 (3) 0.92 

Steroids (CBGe)(21) 0.79 (2) 0.90 0.70 (2) 0.87 0.75 (2) 0.91 

Sulphonamides(lOO) - - 0.54 (6) 0.80 0.65 (5) 0.82 

^ h e leave-one-out crossvalidated- r2 (q2) values are reported together with the opti
mal number of L V s in brackets. A n y q2 values of < 0 are indicated as < 0 and LVopt 

omitted as meaningless. Models are based on the selection of LVopt by the first mini
mum in the SE^, score. Fu l l (fitted) models were derived only where q2 > 0. 

bBracketed values are the number o f compounds in the dataset. 

°AMBER had the required force-field parameters for only 39 o f 41 structures; 
dTestosterone-Binding Globulin affinity as the target activity; 
eCorticosterone-Binding Globulin affinity as the target activity; 

A M B E R force field parameters not available. 
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unseen test chemicals; the biological endpoint used was the affinity for corticosteroid-
binding globulin ( C B G ) expressed as l/[logAT|. This compares to a much lower value 
for C o M F A combined steric and electrostatic fields of 0.35. The apparently poor 
C o M F A test set predictive performance is almost entirely due to an extremely poor 
prediction for the only structure in the test set containing a fluorine atom, omission of 
which raises the C o M F A predictive-r 2 to 0.84. In contrast, the E V A predictive per
formance is raised to 0.74 when this compound is excluded, a small but nonetheless 
significant improvement. Clearly, in terms of the E V A descriptor space this com
pound can not be considered an extreme outlier, but in terms of C o M F A fields it is too 
different from the structures in the training set for a reliable prediction to be made. 

The main advantage of E V A over C o M F A for Q S A R purposes is the fact that 
orientation and alignment of the structures in the data set is not required. In C o M F A , 
the superposition of structures is the major variable, providing in some instances 
different modeling statistics for even quite small changes in the relative positions of 
the atoms in a pair of structures. However, given the nature of the field-based descrip
tors used in C o M F A , alignment does facilitate a powerful means of visualizing the 
important features of a Q S A R model in the form of plots o f the structural regions that 
are most highly correlated (either positively or negatively) with the biological property 
of interest. Despite the undoubted utility of these C o M F A plots, they do not indicate 
precisely which atoms are responsible for the modeled correlations since the electro
static and steric fields are composed of contributions from each and every atom in the 
molecule - the P A C (Predicted Activity Contributions) (30) method has been reported 
to help deal with this problem. A further point to note is that it is not possible to 
predict the effects that structural changes may have on the resultant C o M F A fields. In 
contrast to C o M F A , there exist no obvious means of back-tracking from those compo
nents of the E V A descriptor which are highly correlated with changes in biological 
activity to the corresponding molecular structural features; a discussion of the ways of 
achieving this is presented at the end of this chapter. 

E V A Descriptor Generation Parameters 

The judicious selection of parameters is a prerequisite to the success of any Q S A R 
method, and E V A is no exception. The most fundamental parameter involved in the 
derivation of the E V A descriptor is the Gaussian standard deviation (a). The sam
pling increment (L\ as explained in more detail below, need only be sufficiently small 
such that descriptor sampling errors are minimised. 

Gaussian Standard Deviation (CT) The effect o f varying the a term of the E V A 
descriptor is illustrated in Figure 2 in which, as a is increased, the features of the 
descriptor profile are progressively smoothed. The effect of the application of a 
Gaussian function during the E V A descriptor standardization process is to "smear out" 
a particular vibrational frequency such that vibrations occurring at similar frequencies 
in other structures overlap to a lesser or greater extent. It is this overlap that provides 
the variable-variance upon which regression modeling is dependent. B y definition, 
each and every Gaussian must overlap, but for the most part this occurs at small 
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(negligible) values and consequently the contribution to variance is typically insignifi
cant. Only where the frequency values are sufficiently close to one another relative to 
the value of a is it likely that inter-structural overlap of Gaussians w i l l occur at values 
of significant magnitude. The selection of the Gaussian standard deviation, therefore, 
determines the number of, and extent to which, vibrations of a particular frequency in 
one structure can be statistically related to those in the other structures in the data set. 

In addition to inter-structural overlap of Gaussians, the a term also governs the 
extent to which vibrations within the same structure may overlap at non-negligible 
values. Intra-structural Gaussian overlap of this type, which is also dependent on the 
'density' (i.e. proximity) of vibrations at various regions of the spectrum, causes E V A 
variables to consist o f significant contributions from more than one vibrational fre
quency. The mixing of information contributed by individual normal co-ordinate 
frequencies must be considered to be undesirable in terms of ease of model interpreta
tion. However, in order to provide sufficient inter-structural Gaussian overlap, it is 
inevitable that a certain degree of intra-structural kernel overlap occur. 

Thus, small values of a give rise to minimal intra-structural Gaussian overlap, 
whilst at larger values of CT significant overlap arises. In the former case there w i l l be 
a reduction in inter-structural overlap, perhaps to such an extent that there exists no 
overlap of the Gaussians at significant values. In this instance the descriptor takes on 
the characteristics of a binary indicator, showing only the presence or absence of 
specific vibrational frequencies, thereby rendering the descriptor useless for regression 
analysis, but perhaps still o f utility in classification analysis. In cases where larger a 
values are used increased mixing of the information encoded by one frequency with 
that encoded by other frequencies arises. 

Sampl ing Increment (L) Detailed investigation into the effect of various combina
tions of the a and L parameters on the resulting q2 value has been carried out by 
Turner (21). Turner's results indicate that, for the most part, the final q2 value is 
insensitive to small changes in either o f these parameters, i.e. the information content 
of the E V A descriptor remains consistent. The most significant variations in q2 are 
seen as a is reduced (giving a more spiky spectral profile) and the sampling increment 
(L) is increased; this is analogous to lowering the spectral resolution. This result is 
intuitively reasonable since one would anticipate that, as L becomes very large relative 
to a , some of the Gaussian peaks (or information encoded within them) w i l l be omit
ted from the descriptor. In some cases, the information omitted w i l l be predominantly 
noise resulting in a superior Q S A R model, but in other cases signal may be acciden
tally omitted, resulting in degradation of the Q S A R model. This sampling phenome
non can be referred to as blind variable selection since variables are selected or ex
cluded from the descriptor on a completely arbitrary basis, which is of course undesir
able. The L value at which blind variable selection begins to occur is a-dependent; the 
larger the a term the higher the permissible value of L. Thus, to avoid blind variable 
selection one might wish to minimize the value of L, but this must be balanced against 
the additional computational requirements associated with such a practice. Con
versely, therefore, the value o f L should be maximized in order to reduce the compu
tational overhead, and this leads to the concept of critical L values (Lcrit) which are a-
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specific and which, i f exceeded, may result in a sampling error. In a systematic study 
the Lcrit values for various a have been established (21) with the conclusion that a 
simple rule-of-thumb is that L should be no larger than 2a . These findings confirm 
that the intuitively reasonable, and default, selection of an L of 5 cm"1 with a a term of 
10 cm"1 should result in no significant sampling error and that, in fact, the value of L 
may be increased to 20 cm"1 with no apparent information loss (change in q2). 

The existence of these Lcrit values is important not least because one of the 
problems with C o M F A at present is that the coarse grid-point spacing (typically 2A) 
that is generally used is such that there is incomplete sampling of the molecular fields, 
which may result in information loss. The consequence of this is that reorientation of 
an aligned set of molecules as a rigid body within the defining C o M F A 3D region 
often results in substantial changes to the resulting Q S A R model (31) (as evidenced in 
the q2 values). E V A , on the other hand, does not suffer from such sampling errors 
provided that the a-specific Lcrit values are not exceeded. 

Characteristics of the E V A Descriptor 

Although the E V A descriptor is not intended to simulate the infra-red spectrum of a 
molecule (intensity information is discarded), it is useful to visualize the E V A descrip
tor in the form of a "spectrum". This permits the examination of the distribution of 
vibrations in a molecule or in a set o f molecules. Figure 3 shows plots o f the E V A 
descriptor for deoxycortisol (one of the most active CBG-binding compounds in the 
steroid data set o f Cramer (3)) and estradiol (one o f the inactive structures) over the 
spectral range 1 to 4,000 cm" 1. Also shown in Figure 3 is the univariate standard 
deviation ( S T D E V ) of the descriptor over the entire steroid training set of 21 struc
tures. The density of peaks in the fingerprint region (1 to 1,500 cm' 1 ) indicates that 
there is considerably more vibrational information in this region than in the functional 
group region (1,500 to 4,000 cm' 1 ) o f the spectrum, as is typical o f experimental infra
red spectra. The E V A descriptor values and S T D E V are largest at frequencies centered 
around 1,400 and 3,100 c m " , corresponding to C - H bending and stretching vibrations. 
Figure 3 also highlights the errors associated with the calculation of normal co
ordinate frequencies (in this case using M O P A C ) , since a carbonyl stretching fre
quency is expected (from experiment) to appear at around 1,700 cm" 1, but is repre
sented here by peaks at «2,060 cm" 1. This feature of the E V A descriptor again indi
cates that there is no attempt to simulate an experimental IR spectrum, but this does 
not detract from the usefulness of the descriptor for Q S A R purposes, since consistency 
rather than accuracy across the data set is critical. Furthermore, for Q S A R purposes 
relative, rather than absolute, differences in vibrational frequency across the data set 
are important. One might expect that this would become more of an issue should 
heterogeneous data sets be used since the consistency with which errors associated 
with the reproduction of equivalent vibrational frequencies may be more erratic. In 
practice, however, reasonable Q S A R results have been obtained using a variety o f 
heterogeneous data sets in conjunction with M O P A C (17,21). There is the expectation 
that better quality normal mode calculations (such as, but not exclusively, ab initio 
quantum-mechanics) are likely to give better Q S A R results with heterogeneous data-
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sets. However, there is no evidence to support this assertion since, to the authors 
knowledge, such studies have not been carried out. 

Conformational Sensitivity of the E V A Descriptor 

The sensitivity of C o M F A to the molecular orientation and alignment, and therefore, 
to the molecular conformation is well established (6,7,32) but, whilst E V A is com
pletely independent of molecular orientation and alignment, the impact of the molecu
lar conformation on E V A Q S A R performance has not been discussed thus far. Intui
tively, it is obvious that a change in conformation w i l l result in changes in the force 
constants between atoms and, therefore, in the normal co-ordinate frequencies and 
displacements. The question is "to what extent are these changes evident within the 
E V A descriptor?" and "how much of this can be accounted for through the appropriate 
choice of Gaussian a?". Some limited studies of these conformational effects have 
been performed (29,34). In one such study (34) performed by Shell Research Limited, 
five classes o f chemical, known to act at the same biological target (encompassing 
pyrazoles, thiazoles, piperidines, quinolines and thiochromans, totaling more than 250 
structures) were clustered, using a nearest neighbor algorithm, based on the E V A 
descriptor. The conformations of each molecule were repeatedly randomized, new 
E V A descriptors generated, and the clustering process repeated. The conclusion were 
that, whilst the nearest neighbor relationships between compounds change, the overall 
cluster membership is approximately constant. This suggests that, in most cases, a 
conformational change does not lead to a sufficiently large change in the resulting 
E V A descriptor to cause a change in the underlying statistical model. 

In a more recent study (29), E V A descriptors for test chemicals were generated 
for conformations which matched those used in the training set, and also for non-
matching conformations. A t low a values, the predictions made based on the non-
matching conformations are considerably poorer than those made for the matched 
conformations. This difference gradually decreases until convergence is achieved at a 
= 12 cm" 1; thereafter, the predictions for the two conformations are roughly equivalent. 
In general, the conformational sensitivity of the E V A descriptor decreases as CT is 
increased. This is intuitively reasonable since a larger a permits the significant over
lap o f more distant vibrational frequencies. A s expected, the C o M F A predictions for 
non-matching conformations are much poorer than any of those obtained using E V A , 
thereby highlighting the differences in conformational sensitivity of the two methods. 

QSAR Model Interpretation 

In C o M F A , 3D-isocontour plots are used to visualize those regions o f space indicated 
by the P L S model to be most highly positively or negatively correlated with biological 
activity. Whilst no such 3D visualization is possible with E V A , a variety of 2D plots 
have been suggested (29,33) that indicate the relative importance of regions of the 
spectrum in correlating biological activity. Figure 4 shows two such plots based on a 
two-component P L S model for the steroid data set (29), that in some ways facilitate 
interpretation of an E V A Q S A R model in analogous fashion to the interpretation of an 
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experimental IR spectrum. The two measures shown in the figure are the magnitudes 
of the regression coefficients (B), and the Variable Influence on Projection (33) (VIP). 

To backtrack to the important structural features indicated by the P L S model it 
is necessary to identify the variables most highly correlated with activity, decompose 
those variables into the contributing vibrational frequencies, and then to interpret and 
visualize the underlying normal mode vibrations. Two simple approaches have been 
proposed for identifying the most important variables in the P L S analysis (33). The 
first approach suggests that important variables w i l l have regression coefficients in 
excess of half of the largest coefficient. The second method, based upon the V I P 
score, states that important variables w i l l have a V I P score greater than 1.0, whilst 
unimportant variables w i l l have a V I P score less than 0.8 (33). Analysis o f the E V A 
descriptor (c = 4 cm"1) for the steroid data set by Turner et al (29) results in the se
lection of a large number of E V A variables at a threshold of V I P > 1.0 (183 variables), 
while a threshold of V I P > 3.0 yields a more manageable number (17 variables). It is 
reasonable to use such a high V I P threshold since these are the variables most heavily 
weighted by P L S , and thus may be used to get some feel for the main structural fea
tures used to discriminate between the training set structures. 

The decomposition of the selected (important) E V A variables into their con
tributory normal mode frequencies is most straightforward, and certainly less ambigu
ous, i f each E V A variable is composed of one and only one normal co-ordinate fre
quency. For this reason, it is important that the smallest a value is used during the 
analysis as possible, since, as discussed earlier, a directly affects the degree of intra-
structural Gaussian overlap. Examination of the underlying frequencies for E V A 
variables with V I P > 3.0 is not straightforward. However, for the steroid data set, P L S 
appears to discriminate between high, medium, and low active structures based on the 
presence or absence o f specific frequencies that are characteristic o f the functionalities 
considered important for binding affinity. For example, the variable with the second 
highest V I P score at 2,056 cm"1 relates to the position-3 carbonyl group stretching 
mode. This group is one of the features deduced by Mickelson et al (35) to be critical 
for CBG-binding and is present in all o f the high and medium activity compounds, as 
well as the most active of the low activity compounds. 

The initial attempts at interpreting Q S A R models based upon the E V A descrip
tor, discussed herein, are encouraging in that the classifications between structures 
can, to some extent, be rationalized in terms of the features postulated to be necessary 
for activity. Nonetheless, E V A Q S A R models can not, to date, be interpreted to the 
same extent as C o M F A models in which the correlations may be related to probe 
interaction energies. 

Recent Developments 

The promising results presented thus far may lead one to believe that development of 
the E V A methodology has been completed, but this is not the case. One of the most 
promising developments has centred upon the selection of localized a values across 
the spectrum. The motivation for this is two-fold. First, there are two datasets previ
ously noted for which E V A has not provided good Q S A R models. Second, "classical" 
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E V A , which uses fixed CT values for all vibrations, is a specific example of the more 
general case where CT may have optimal localised values; i.e., different parts of the 
spectrum may be better treated with different width Gaussians. In order to direct the 
search for appropriate localised g values a genetic algorithm ( G A ) is used in conjunc
tion with the P L S crossvalidation q score as the objective function to be optimised. 
Details of this approach, tentatively referred to as E V A _ G A , have yet to be published. 
However, the results obtained with this procedure thus far are extremely promising. 
M u c h improved Q S A R models have been obtained in every case (seven datasets) 
attempted to date - including the oxadiazole and biphenyl datasets for which poor 
models were obtained previously (21). In addition, E V A G A has provided Q S A R 
statistics better than or equivalent to C o M F A for all these datasets. The most signifi
cant aspect of this work is that predictions made upon previously unseen test com
pounds can be enhanced in comparison to classical E V A , indicating that there is not a 
tendency to overfit to the training set compounds. Work is continuing both to validate 
the technique thoroughly and to optimise the G A parameters concerned. 

Summary 

One of the main problems encountered with field-based Q S A R techniques such as 
C o M F A is the need to align the structures concerned. The selection of such align
ments, in terms of the molecular orientation and conformation, is essentially arbitrary, 
but can have profound effects on the quality o f the derived Q S A R model. For this 
reason, a number of groups have attempted to develop new 3 D - Q S A R techniques that 
extend beyond this limitation, with varying degrees of success. This chapter has 
reviewed the progress made with one such methodology, that based upon molecular 
vibrational eigenvalues, and known as E V A . 

E V A provides an entirely theoretically-based descriptor derived from calcu
lated, fundamental molecular vibrations. Molecular structure and conformation are 
implicit in the descriptor since the vibrations depend on the masses of the atoms in
volved and the forces between them. The significant advantage that E V A offers rela
tive to C o M F A and related 3 D - Q S A R techniques is that molecular vibrational proper
ties are orientation independent, thereby eliminating ambiguity associated with the 
well known molecular alignment problem. 

The discussion of the Q S A R modeling performance of E V A herein illustrates 
the general applicability of the descriptor and the robustness of the resultant Q S A R 
models in terms of crossvalidation statistics. In addition, extensive randomization 
testing of some of the P L S models discussed herein (29) shows that the probability of 
obtaining similar correlations by chance to those actually obtained using the E V A 
descriptor is essentially zero. Randomization and related statistical tests have played a 
crucial role in conclusively demonstrating that E V A can be used to correlate biologi
cal activity or other properties and generate statistically valid Q S A R models. In most, 
but not al l , cases examined E V A compares favorably with C o M F A , both in terms of 
the ability to build statistically robust Q S A R models from training set structures, and 
to use those models to predict reliably the activity of "unseen" test chemicals. Fur-
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thermore, E V A has yielded predictively useful Q S A R models for quite heterogeneous 
data sets, where the application of C o M F A is either difficult or impossible. 

In addition to the development of the use of localised a values in the genera
tion o f the E V A descriptor briefly described above ( E V A G A ) there are a number of 
other areas in which E V A could be developed. There is considerable interest in ex
ploring several aspects of the descriptor, including the correlation with specific types 
of effects, such as hydrophobic, steric, or electrostatic. In addition, despite the exam
ple provided herein of taking significance-of-variable plots coupled with techniques 
for selecting these variables as a means to interpreting an E V A Q S A R model, there is 
need for more sophisticated techniques for the decomposition of E V A variables into 
the underlying normal mode vibration(s) and thereby to the groups o f atoms that are 
characteristic of those vibrations. A further area that requires investigation is the 
sensitivity o f E V A to the molecular conformation used, and to what extent this gov
erns the choice of a parameter. 

A s the E V A methodology matures, other applications, besides 3 D - Q S A R , w i l l 
begin to emerge that take advantage of the strengths of the technique. One such ex
ample (36) centers on the use of E V A for similarity searching in chemical databases, 
in which the overall conclusions are that E V A is equally effective for this purpose as 
the more traditional 2D fingerprint method, although, depending on the similarity 
measure applied, the hits returned by E V A and 2D similarity measures may be struc
turally quite different. A consequence of this finding is that EVA-based similarity 
searching may provide an alternative source of inspiration to a chemist browsing a 
database. The applicability o f E V A to similarity searching greatly contrasts with the 
complexities inherent to field-based similarity searching (10) in chemical databases. 

Finally, the technique described herein that yields the standardized E V A de
scriptor from the calculated vibrational frequencies is not limited to that purpose and 
may, in principle, be applied in any circumstance where the property or descriptor is 
non-standard. For example, the standardization procedure could be applied to intera
tomic distance information, either for a single conformation, or as a means of summa
rizing conformational flexibility. Furthermore, the same procedure could be applied 
to other descriptions of molecular structure that are dependent on the number of at
oms, such as electron populations, partial charges, or vibrational properties other than 
normal co-ordinate eigenvalues ( E V A ) , including transition dipole moments 
(intensity) or eigenvector data (directionality of the vibrations). The E V A standardi
zation methodology, therefore, provides a novel and potentially widely applicable 
means of transforming non-standard data. 
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Chapter 21 

PRO_ANALOG: Automated Analog Building 
According to Principles of Medicinal Chemistry 

Richard G. A. Bone, Michael A. Firth 1, Richard A. Sykes, 
Christopher W. Murray, and Jin Li 

Proteus Molecular Design, Ltd., Lyme Green Business Park, Macclesfield, 
Cheshire SK11 OJL, United Kingdom 

PRO_ANALOG is a suite of utilities which addresses the matter of 
expanding the analog space around a lead molecule. It has been 
implemented within the Prometheus suite of "computer-aided 
molecular design" programs. A lead molecule will have a large number 
of possible derivatives which should be investigated for pharmaceutical 
activity. It is likely that a medicinal chemist would only consider an 
incomplete set of these. We have implemented functionalities which 
allow a medicinal chemist or molecular modeller to select categories of 
possible transformations and derivatisation sites and, in a combinatorial 
sense, produce a library of all the analog molecules that would arise 
from such modifications. Molecular transformations are encoded with 
a new SMILES-string matching technology. Use of predefined lists of 
familiar functional groups from the medicinal chemistry literature 
ensures that the derived molecular structures are likely to be 
synthetically accessible. A range of transformation classes enables 
almost any molecular structure to be constructed. Statistical 
techniques used in molecular diversity can be applied to cluster the 
structures and ranking can be achieved by passing them to ligand
-receptor docking software. The members of the libraries may then be 
assessed for their likely efficacy prior to embarking on laboratory 
synthesis. The method is illustrated here with a set of thrombin 
inhibitors. 

In the development of a drug candidate from a "lead" molecule, a significant 
proportion of the effort lies in the choice and exploration of medicinal chemistry 
around that lead. Hand in hand with deducing "structure activity relationships", many 

1 Current address: International Research IS, Zeneca Pharmaceuticals, 
Mereside, Alderley Park, Macclesfield, Cheshire, United Kingdom, SK10 4TG. 

3 3 0 © 1999 American Chemical Society 
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series of derivatives must be synthesised and tested. Especially in the early stages of 
such a task, there can be a daunting array of possibilities. The chemist is faced with 
two problems: how to prioritise amongst the possible derivatisation routes; and how 
to combine systematically the effects of successive derivatisations to explore the 
analog space fully. W e describe here the functionality and application of a new 
software package which addresses these issues. 

P R O _ A N A L O G is the latest addition to the Prometheus suite of computer-
aided molecular design ( C A M D ) programs (7). It enables explicit specification of 
derivatisations via advanced SMILES-string (2) matching and thence the generation of 
virtual libraries of such structures. Effecting molecular transformations with editing 
operations on S M I L E S strings or other line-notations is not a new idea. For example, 
Martin and van Drie (3) demonstrated how the A L A D D I N control language could be 
used to modify S M I L E S strings in the context of substructure searching. H o and 
Marshall (4) have utilised properties of S M I L E S strings when generating databases of 
new molecular structures. Daylight's "Reaction Toolkit" (5) is based on line-notation 
representations of chemical transformations. Nevertheless, our implementation has 
broad applicability and differs from previous ideas principally in its systematisation. 

In essence, our approach involves the user heavily in the chemistry-dependent 
decisions; the computer itself facilitates the more mundane tasks of structure 
manipulation and library building. Our scheme is shown in figure 1. The first stage of 
systematic generation of analogs requires identification of several derivatisation sites 
by the chemist and specification of lists of functional groups or isosteres to place at 
each one. This level of interactivity ensures that the molecular modeller or medicinal 
chemist retains control over the nature of the chemistry to be explored. 
Representation of synthetic transformations is achieved using utility functions written 
in the programming language G L O B A L 2 (6) and expressed as SMILES-str ing 
manipulations. In this way, chemical transformations are encoded as rules which may 
even be saved for future use. Further functions take lists of derivatisations and apply 
them to the lead molecule structure and its growing lists of analogs. Combinatorial 
enumeration enables all possible combinations of analogs resulting from derivatisation 
at each site to be produced. The merits of one set of analogs over another may be 
assessed by computing docking scores for each set, using the program P R O _ L E A D S 
(7). Sets which consistently produce better docking scores can then be considered for 
synthesis. 

In this way, we are able to both achieve a labour saving in the automated 
generation of derivatives (as well as systematisation in that effort) and provide the 
possibility to "score" a given library, thus offering a means to assess the benefit of a 
set of transformations. 

In this paper we describe the software tools comprising P R O _ A N A L O G and 
give an example of its application. The core of the utility is S U P E R - S M I L E S , an 
enhanced implementation of S M I L E S which allows us to express derivatisations as 
molecular transformation rules. We outline the features of S U P E R - S M I L E S which 
are critical to the development and application of P R O _ A N A L O G . We go on to 
describe the types of transformations which are built into the package and which 
enable us to derivatise molecules in highly specific ways. Then we show how 
combinatorial libraries may be built and judged for their probable efficacy. In practice, 
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Lead Molecule 

Define List of 
Transformations 

SMILES 
Databases 

Substituent Lists 

Apply Transformation 

A n a l o g s A n a l o g s 

2D-Generator 

3D-Converter 

Docking 
(PRO.LEADS) 

Clustering 
(Property Calculation) 

Figure 1. Typical use and application of P R O _ A N A L O G in drug design process. 
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all of this functionality is becoming accessible via a graphical user interface currently 
under development. 

G L O B A L 2 

Underpinning the Prometheus software environment is the programming language 
G L O B A L 2 which is based on the original implementation of G L O B A L (6). The 
language may be executed within an interactive environment or from pre-written 
scripts and finds its main application as the construction of driver routines for 
molecular design procedures. In this context it behaves as an interpreted language. 
But at root, it is a fully functional computer language and has many of the features 
intrinsic to other more widely used languages. It has a blocked structure and function 
declaration similar to that of Pascal; typed variables, loop structures, logical 
constructs and formatted I/O as are found in F O R T R A N and C ; aspects of object-
orientation found in C++ such as class structures and inheritance; and general-purpose 
file and string-manipulation facilities as commonly associated with Perl and Tel . 
Additionally it is possible to call F O R T R A N and C subroutines and functions from 
G L O B A L 2 as well as access the U N I X system interface, e.g., for performing file 
operations. 

With time, many desirable utilities to facilitate molecular structure 
manipulation have been created with G L O B A L 2 . B y now, most operations are 
performed with molecule data structures, calling upon a large library of chemistry-
specific functions. The work in this paper relies upon a small subset of these. 
Principally we use the built in capabilities for manipulating character strings. We 
show how it is possible to construct with ease, some quite complicated molecular 
structures using just string-concatenation and splicing. 

S M I L E S and S U P E R - S M I L E S 

S U P E R - S M I L E S is a set of extensions to Daylight's S M I L E S (8). It is effectively a 
super-set of S M I L E S : almost all S M I L E S strings can be interpreted by it and lead to 
a structural representation in the usual way. The enhanced functionality has been des
igned to facilitate substructure matching and reaction building within the framework 
of a well-established line-notation for chemical structure. In outline, S U P E R -
SMDLES allows complete structure specification including all bonds and hydrogens 
but does not support lower-case definitions of aromatic rings. It enables substructure 
identification with a powerful pattern matching syntax, has facilities for atom-label and 
macro specification and allows transformations to be defined with insertion/deletion 
facilities. The definition of the S M I L E S language (with S U P E R - S M I L E S extensions) 
has been implemented using a parser-generator. 

Molecule Bu i ld ing and Pattern Match ing . The conversion of S U P E R - S M I L E S 
strings to molecular structures (i.e., a bond connection table) is achieved with the 
functions S m i l e s M a t c h and S m i l e s U n i q u e M a t c h which have been 
implemented using a finite state machine. This underlying structure enables us both to 
build molecular structures and match S U P E R - S M I L E S patterns. S m i l e s M a t c h 
returns the successive matches of a S U P E R - S M I L E S pattern against a reference 
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molecule. A pattern may match several times against the reference, and topological 
symmetry can often mean that certain matches are equivalent. 
S m i l e s U n i q u e M a t c h guarantees uniqueness of the results of pattern-matching. A 
structure may be built by supplying a "null" molecular object as reference; 
S m i l e s M a t c h then itself returns a structure corresponding to each molecule 
represented by a pattern. Another function, S m i l e s C a n o n , adopts the Weininger 
algorithm (8) for converting a molecular structure into a "canonical" S M I L E S string 
representation. These functions form the core of our ability to carry out molecular 
transformations with SMILES-based syntax. 

As part of our suite, we have devised a method of deriving 2D-coordinates 
from SMILES-strings (or a connection table). This feature facilitates testing of 
SMILES-str ing writing and also visualisation of the results of analog building and 
library formation; it wi l l be described elsewhere (9). 

Databases of Funct ional Groups. The requirement for hydrogens, bond-orders and 
aromatic rings to be fully specified leads us to set up a fragment database of 
commonly used moieties, largely for convenience. The ability of S U P E R - S M I L E S to 
recognise macros (pre-defined fragment or pattern names) makes this a particularly 
useful feature. Over 250 S U P E R - S M I L E S strings have been encoded into a file of 
categorised functionalities. (Examples of the categories present include A l k y l s , 
C y c l o a l k y l s , C a r b o n y l s , H a l o c a r b o n s , H e t e r o A r o m a t i c s , 
A l k o x y s and A m i n o A c i d s . ) Each fragment-name can be "cut and pasted" when 
forming transformation rules or used as a macro within S U P E R - S M I L E S or as a 
(string) variable name within G L O B A L 2 . For example, the A l k y l s package 
includes the definitions: 

• M e t h i n e = " - C - H " ; 
• M e t h y l e n e = " - [ C - H 2 ] " ; 
• M e t h y l = " - [ C - H 3 ] " ; 
• E t h y l = [ C - H 2 ] - [ C - H 3 ] " ; 

Our default form for fragments is that they add "on the left", i.e., the leading 
bond (on the lefthand end of the string) is always present. (Therefore when 
constructing an entire molecule, a "capping group" must be placed initially.) 

The string-syntax of G L O B A L 2 allows build up of larger functional groups 
(and molecules) from smaller patterns. In which case, a propyl chain may be built as 
follows: 

• P r o p y l = M e t h y l e n e + E t h y l ; 

String concatenation sets the variable P r o p y l to [ C - H 2 ] - [ C - H 2 ] - [ C - H 3 ] ". 
The user is at liberty to introduce any other functional group definitions. 

Recent conversion of the N C I database (10) to a S M I L E S format wi l l facilitate access 
to S M I L E S representations of many more molecules of even greater complexity. 

S U P E R - S M I L E S Ut i l i ty Functions. A problem with a linear notation is that 
polyatomic functional groups (especially ring systems) may have more than one 
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possible attachment point. It would not be desirable to store multiple representations 
of the same functional group to cover all possible environments. Therefore we have 
two utility functions, S m i l e s S h i f t e r and S m i l e s S p l i c e r which exploit 
embedded labels in certain of the S U P E R - S M I L E S strings in our database. Labels 
begin with an underscore and take a number which corresponds to I U P A C 
conventions. 

Pyridine has been encoded (as a macro) in a "canonical" form: 

• N ' _ l ' : 1 : C , _ 2 ' (-H) : C ' _ 3 ' (-H) : C ' _ 4 ' (-H) : C ' _ 5 ' (-H) : C ' _ 6 ' (-H) :1 

The labels are in quotes ( w ) and the colons ( :) are aromatic bond types. 
S m i l e s S h i f t e r acts on such a labelled S U P E R - S M I L E S string to return a 

string whose leftmost atom is that specified and with any hydrogen attached to that 
atom automatically stripped off. For example, to obtain a 3-substituted pyridine: 

• S m i l e s S h i f t e r ( P y r i d i n e , 3 ) ; 

gives us W - C : 1 : C ( - H ) : N : C ( - H ) : C ( - H ) : C : 1 - H " . (The labels are removed in 
the shifting process.) 

If we wish to attach some other atom or group at a pre-defined position in the 
macro, then we are effectively specifying simultaneously "right" and "left" attachment 
points. S m i l e s S p l i c e r acts in the same way as S m i l e s S h i f t e r but allows 
additionally a "substituent" to be attached in a specified place on the string. (We are 
able to do this with appropriate use of S m i l e s M a t c h and S m i l e s C a n o n . ) For 
example, (using the macro definition of A m i n o ) : 

• S m i l e s S p l i c e r ( P y r i d i n e , 3 , A m i n o , 2) ; 

expands to " - C : 1 : C ( - [ N - H 2 ] ) : N : C ( - H ) : C ( - H ) : C : 1 - H " . 
Each of these functions can be used within G L O B A L 2 to build up more 

complicated molecules in an intuitive way, for example: 

• H i s t i d i n e = A m i n e + M e t h i n e + 
" ( w + S m i l e s S h i f t e r ( I m i d a z o l e , 4 ) + " ) C ( = 0 ) - 0 - H " ; 

The other amino acids may be similarly built up. Stereochemistry is handled in the 
same way as Daylight's set of definitions (see, e.g., (11)). 

Pattern Ma tch ing . The specification of substructures within a molecule is useful not 
only for verification of S U P E R - S M I L E S representations but for identification of 
environments at which to carry out derivatisations. In the spirit of both flexibility and 
precision, many features are supported. 

W i l d cards. Certain types for atoms (*) and bonds ( | , or, by default, absence 
of explicit bond-type) allow simple specification of all or multiple parts of a molecule. 
For example, the ring substructure " C - l - * - C - C - C - C - l " could represent either 
(the carbon skeleton of) cyclohexane or (the heavy-atom skeleton of) piperidine. 
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Constraints. The directive Not allows exclusion of particular atoms from a 
matching environment. For example, the substructure "N(-H) (Not -C=0) - C " 
specifies a (primary or secondary) amine but excludes amides. 

Once enforces a single match of the S m i l e s M a t c h utility in the case of 
topological symmetry. Therefore, "{Once N(-C) (-C) -H}" will match a 
secondary amine but force a single symmetry-unique match to result. 

Logicals. The conjunction Or allows more than one match, where possible. 
For example, in order to match an imine or a carbonyl group (but not an alkene), one 
can type "C=(0 Or N) ". 

The "exclusive Or", (Xor) may be used where several alternative substructural 
representations can be used and it is not necessary to try each member in the list once 
one match has been found. This is particularly useful when specifying aromatic rings 
where either Kekule or valence-bond forms may be present, viz: the patt
ern W C : 1 : C: C: C: C: C: 1 Xor C-1=C-C=C-C=C-1" wil l find the first match of 
a phenyl ring starting at any given position. 

Other Features. Additionally, there are facilities for skipping the scope of the 
pattern to disjoint parts of the molecule ( G o t o , Start, R e v i s i t ) but these will 
be described elsewhere (72). 

Transformations in SUPER-SMILES 

S U P E R - S M I L E S transformations, allow amended ("derivatised") molecules to be 
generated from a reference ("lead") molecule or molecules. The S U P E R - S M I L E S 
directives Add and Delete may be applied at any matching point within a pattern. It 
is necessary to specify a matching environment, corresponding to some portion of the 
molecule. Insertions and/or deletions are then applied to that context. 

A simple example of substitution is therefore: 

• 0=C (Delete -CI) (Add -O-H) 

In this case, the transformation represents nucleophilic substitution at the carbonyl 
group, specifically hydrolysis of an acid chloride functionality. If there is no 
"C (=0) -CI" group present, no deletion/addition occurs. 

Classes of Transformations. Whilst the simple addition/deletion syntax is relatively 
straightforward, more complex operations such as insertions, ring formation or 
substitution of atoms at branch points are quite tricky to specify. For ease of use, 
underlying S U P E R - S M I L E S transformations for different classes have been encoded 
by a series of G L O B A L 2 functions, each of which returns a S U P E R - S M I L E S string 
representing the specific transformation. Arguments passed can include functional 
groups to add/delete and the environment in which they are to be found. The 
arguments are spliced/embedded into the requisite S U P E R - S M I L E S syntax. The 
resulting S U P E R - S M I L E S rule may be stored and re-used for future analogs or leads. 
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We have developed 8 different transformation classes ( S u b s t i t u t i o n , 
A d d i t i o n , I n s e r t i o n , D e l e t i o n , B r i d g e , R e p l a c e m e n t , E x t r a c t i o n , 
A r o m a t i c Subs ) . Consequently, the type of functionalisation that we can effect is 
quite large and our range of transformation classes is much more powerful than the 
simple single-point attachments of other analog builders. Other benefits include the 
fact that we are not limited to actual synthetic chemical methods in our choice of 
transformations. Consequently, portions of the lead space may be explored which 
would not necessarily be immedately accessible by straightforward laboratory 
reactions. Furthermore, multi-step transforms may be swiftly represented by a single 
S U P E R - S M I L E S transformation rule. 

Categories of Transformation Function. Understanding that the scope of a pattern 
may be quite wide and is context dependent, the classes of transformation each have 
several distinct instances of applicability. In general, we have: 

• < G e n e r i c > (apply transformation wherever possible) 
• S p e c i f i c (specify environment/attachment points) 
• S i n g l e (apply the transformation only once where symmetry is present) 
• S m a r t (takes care of hydrogens at attachment points, when present) 

In practice, access to all these functions is via a graphical user interface which permits 
visual selection of derivatisation sites and menu-driven access to the various 
functionalities. 

Examples. In figure 2, we show examples of the applicability of each of the 
transformation classes. In each case we give the function call, comprising the function 
name and its S U P E R - S M I L E S arguments which would be required to effect the given 
transformation. 

Aromatic Substitution (a). In the case of phenyl substitution, when exactly 
one group is already present, there is no need to specify the reference attachment 
point in the molecule. 

Substitution (b). In this case we show the application of the rule if all 
hydrogens are fully specified in the reference molecule. 

Replacement (c). Substitution of an atom at a branch point demands use of a 
different set of functions from those which effect straightforward terminal substitution. 
It is necessary to use a "Specific" function because there is more than one carbon 
atom in the molecule. 

Addition (d). In the case where no hydrogens are present in the structure, we 
can use "Addit ion" to extend new groups off a predefined attachment point. 

Insertion (e). Chain lengthening can be carried out between bonded atoms. 
Deletion (f). Terminal atoms can be removed easily enough. 
Extraction (g). Portions of chains can likewise be deleted leaving an intact 

molecule. This operation only has meaning for a portion of a molecule which has 
exactly two connections. 

Ring Formation (h). We can insert a group between two positions which 
themselves are not directly bonded. 
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O PhenylSingleMetaSub ("-Br") ^ |l I Q 

S u b s t i t u t e ("-0-H", "-CI") || 
^ CI 

c |l I Q S p e c i f i c C h a n g e ( " C n , "N" , "C=C", "C=CT) H I ^ 

( f ^ ^ ^ S p e c i f i c A d d ( n C - C " , "-0") C ^ ^ ^ O 

( i ^ r ^ o S p e c i f i c I n s e r t ( ' ' - C - " , "C(=0) ", "CT) ( j^T^X 

or 
o 

o 

o 
Remove( H - 0 n ) I 

o 

0 S p e c i f i c E x t r a c t ("C", "C=C", "C=0") fT ° 

QT^>° B r i d g e ( " - c - " - , , c = c " ' , o , ) • C C o ° 

Figure 2 . Examples of each class of transformation function. 
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Combinatorial Library Building 

A major area of application for analog building is in library design. The 
transformation functions that we have developed allow a medicinal chemist or 
molecular modeller to interactively define S U P E R - S M I L E S rules for analog building 
and therefore to explore lead optimization. In the "brute force" scenario, where all 
possible derivatisations need to be considered, a large number of possibilities clearly 
results. In general, though, the chemist wil l have identified a small number of sites in 
the lead molecule, at which, in each case, a list of possibilities needs to be 
investigated. A "combinatorial library" can be built in which, systematically, 
derivatisations at each site are combined with derivatisations at each of the other sites 
in turn. Accordingly, P R O _ A N A L O G contains the software technology to cope with 
building lists of (site-specific) transformation rules and the ability to assemble the 
application of such lists of rules into libraries of analogs. 

Transformations Derived from Lists of Substituents. We have "accumulator" 
functions which take as an argument, a transformation function type, arguments to be 
passed to it, and a list of substituents. These accumulators return lists of S U P E R -
SMEL E S transformation rules. 

For example: within G L O B A L 2 we set up a list of substituents, each of which 
is to be applied to a common substitution position in a target molecule: 

• S u b s L i s t = [ " - B r " , M e t h y l , " - 0 - H " , " - C 1 C C C C C 1 " ] ; 

We can pass such a list to an accumulator in order to produce a list of transformation 
rules. 

• S u b s R u l e s = 
S u b s t i t u t e A c c u m u l a t e ( S u b s t i t u t e , S u b s L i s t , " - C I " ) ; 

In this case, each member of S u b s L i s t in turn is passed to the function 
S u b s t i t u t e along with the argument " - C 1 " so that a number of chloride 
replacements can be specified. 

Analog Library Construction. Enumeration classes have been constructed in 
G L O B A L 2 which allow recursive application of lists of transformations to a 
(growing) list of analogs. The function, C o m b i n a t o r i a l L i b r a r y , takes as 
arguments, separate lists of transformation rules. The lead molecule (or, even, series 
of molecules) can be read in from an M D L SD-file (13) and the derivative molecules 
are exported to a separate SD-file. A n interesting point of note is that there is no 
restriction that rules in a given list all refer to the same derivatisation position. For 
example, different sites on the same benzene ring could be mixed in the same rule-set. 

Case Study: Thrombin Inhibitors 

In order to demonstrate the potential utility of virtual library building, we mimicked a 
Q S A R case study from the literature of thrombin inhibitor synthesis. Our premise is 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
02

1

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



3 4 0 

to show that the virtual experiment could, in principle, be used to assess, a priori, the 
likely efficacy of various members of these derivatives. In this case a receptor 
structure is known so it makes sense to attempt to characterise a set of analogs by 
how well they dock, rather than by, say, molecular similarity criteria (14) or by a 
diversity analysis. 

Na-(2-naphthylsulphonylglycyl) 4-amidinophenylalanine piperidide ( N A P A P ) 
is a known strong thrombin binder for which a receptor-bound crystal structure is 
available. In the years before that structure was known, N A P A P itself was identified 
in a series of Na-arylsulphonylaminoacylated 4-amidinophenylalanines investigated by 
Stiirzebecher and coworkers (15), the core structure of which is shown in figure 3. 
With the benefit of hindsight, we can show how computational docking studies 
corroborate the experimental results. 

We work with two lists of substituents, L l and L2 containing S U P E R -
S M I L E S strings for groups placed at positions R l and R2 respectively. 

The 4 Rl-substituents were n-butylamine, pyrollidine, piperidine and 
morpholine. They give rise to a number of amides with small hydrophobic groups 
attached to the nitrogen. 

The 8 R2-substituents were chosen to explore different ways of orienting and 
displacing an arylsulphonic group away from the a-amino group of phenylalanine. 
They are: tosyl; a - and P-naphthylsulphonyl; tosyl-glycyl; a - and P-naphthylsulphonyl 
glycyl; tosyl (3-alanyl and tosyl e-aminocaproyl. The main effect being explored is a 
lengthening of the chain between the a-amino group and the arenesulphonyl group. 
We may build each of the substituents from S U P E R - S M I L E S macros and utilities, 
predefining Tosyl as "Sulpho + SmilesShif ter (Toluene, 4) ": 

• Tosyl 
• SulphoLinker + SmilesShifter(Naphthalene,1) 
• SulphoLinker + SmilesShifter(Naphthalene,2) 
• Carbonyl + Methylene + AmineLinker + Tosyl 
• Carbonyl + Methylene + AmineLinker + Sulpho + 

SmilesShifter(Naphthalene,1) 
• Carbonyl + Methylene + AmineLinker + Sulpho + 

Smi1es Shi f ter(Naphthalene,2) 
• Carbonyl + EthylLinker + AmineLinker + Tosyl 
• Carbonyl + PentylLinker + AmineLinker + Tosyl 

We need to assemble transformation rule-sets for each substitution position. We use 
4-amidino phenylalanine as the core molecule, in which case R l is "-0-H" and R2 is 

w -H". For the Rl-substituents, we can use Substitute functions, for example: 

• Subst i tute(Hydroxyl ,Butyl); 

For the amino-substituents we can use Add functions. 

• SmartSpecificSingleAdd(Tosyl, 
WC1CCCCC1[CH2]C(H)N(H)"); 
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The S m a r t S p e c i f i c S i n g l e A d d function implicitly takes care of the presence of 
hydrogen attachment to the amine nitrogen, and additionally forces only one 
symmetry-unique match. 

Using A c c u m u l a t o r functions, our sets of substituents (held in lists L I and 
L2) and the above transformation rules, we can construct rule-sets T I and T2 
respectively. Finally, we build a combinatorial library comprising 32 molecules, 
accounting for each possible pair of substituents using the two rule-sets with a single 
function call: 

• C o m b i n a t o r i a l L i b r a r y ( " c o r e . s d " , " l i b . s d " , T l , T2); 

In order to "score" each member of the library we proceed using a protocol 
which includes the following steps: protonate the amidino group; use Converter (16) 
to obtain a 3D-geometry for each molecule; optimize each 3D-structure to a local 
minimum using molecular mechanics; identify rotatable bonds in each ligand; carry 
out docking runs on each ligand with the bovine thrombin receptor from which bound 
waters had been removed, " 1 E T S " (77). 

In correspondence with the known bound structure of N A P A P (77), we 
constrained the amidino group to be planar with the benzene ring; but full flexibility 
of rotation around the aromatic-sulphonyl group was permitted in order to allow the 
bulky aromatic group to attain optimum fit in the binding site. The docking method 
(18) utilised a fixed receptor geometry, an empirical scoring function (19) and a Tabu-
search method of optimization, starting at 20 random initial configurations (7). 

In the published work of Stiirzebecher, the pyrollidinyl and piperidinyl 
substituents consistently performed better than the n-butylamino or morpholinyl 
substituents for all the R2-substituents (with the exception of the pyrollidinyl analog 
with oc-naphthylsulphonyl). The best substituent sets overall were with a - and f$-
naphthylsulphonylglycyl as R2-substituent, with the best-performing substituent 
combination being P-naphthylsulphonylglycyl with piperidinyl, i.e., N A P A P itself. 

The principal features of N A P A P binding comprise: hydrogen-bonding 
contacts by the amidino group in the "SI-pocket"; hydrophobic interactions in the " P " 
and " D " pockets; and a P-sheet interaction. These are shown schematically in Figure 
4. The P-pocket comprises residues His-57, Tyr-60 and Trp-60. The residue Leu-99 
flanks both the P and D-pockets. The D-pocket itself is made up of Trp-215, lie-174 
and Asn-98. There is a P-sheet interaction between Gly-216 and the glycyl 
sulphonamide link. 

In table I we give, for each library member, the docking scores and itemize the 
principal features of the predicted binding mode. In this test case we are looking for 
parallels with the published activity data, as well as successful replication of known 
thrombin-binding interactions. Even now, docking calculations come with a 
significant caveat: it is very hard to both reproduce energies of binding and reasonable 
docked geometries. Nevertheless, a study of the table shows that the series with 
naphthylsulphonylglycyl substituents in the R2 position (which includes N A P A P ) give 
lowest binding energies and best correspondence with the binding features of N A P A P 
itself. 

But not all of the substituent combinations are able to recover the key features 
of N A P A P binding. This is to be expected. Whereas all ligands are able to make the 
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Figure 4. Schematic of N A P A P ' s interactions in the thrombin binding site. 
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Table I. Computed binding characteristics of NAPAP Analogs 
R l R2 K i / u M o l . Best E a A E b Binding Features c 

Morph. Tos-8-Acp — ^12.057 — S 1 ; P ; D 
Pip. Tos-e-Acp 13 -43.539 — S 1 ; P ; D ; Half-p 
Pyr. Tos-e-Acp — -41.827 1.646 S 1 ; P ; D 
n-But. Tos-e-Acp — -44.394 2.627 S 1 ; P ; D 

Morph. Tos-p-Ala 22 -44.463 — S 1 ; P ; D;P 
Pip. Tos-p-Ala 0.17 -41.352 — S 1 ; P ; D 
Pyr. Tos-p-Ala 2.1 -46.088 — S 1 ; P ; D ; Half-P 
n-But. Tos-p-Ala — -41.154 2.922 S 1 ; P ; D 

Morph. p-Nas-Gly 0.23 ^ 4 . 3 4 0 — S 1 ; P ; D ; p 
Pip. d P-Nas-Gly d 0.006 -46.942 — S 1 ; P ; D ; p 
Pyr. P-Nas-Gly 0.013 -^5.435 — S 1 ; P ; D 
n-But. p-Nas-Gly 2.3 -50.788 — S 1 ; P ; D ; p 

Morph. oc-Nas-Gly 0.57 ^45.552 • — S1 ;P ; D ; Half-p 
Pip. a-Nas-Gly 0.014 -50.110 — S 1 ; P ; D ; p 
Pyr. oc-Nas-Gly 0.058 -45.041 — S 1 ; P ; D 
n-But. a-Nas-Gly 15 -45.146 — S 1 ; P ; D 

Morph. Tos-Gly 4.1 -45.995 — S 1 ; P ; D ; p 
Pip. Tos-Gly 0.048 -46.409 — S 1 ; P ; D 
Pyr. Tos-Gly 0.052 -41.376 — S 1 ; P ; D ; Half-P 
n-But. Tos-Gly 14 -43.339 — S 1 ; P ; D 

Morph. P-Nas 3.1 ^ 4 . 9 6 0 4.934 S 1 ; P ; D ; Half-p 
Pip. p-Nas 0.42 -^6.325 1.767 S 1 ; P ; D 
Pyr. P-Nas 1.9 ^ 6 . 6 4 2 — S 1 ; P ; D 
n-But. P-Nas 3.6 -44.241 — S 1 ; P ; D ; (Ser-214) 

Morph. a-Nas 3.3 -42.048 0.845 S 1 ; P ; D 
Pip. a-Nas 2.8 -42.606 oo 
Pyr. a-Nas 4.9 -44.785 0.512 S 1 ; P ; D 
n-But. a-Nas 5.7 -43.062 oo 

Morph. Tos 5.4 -42.453 — S 1 ; P ; D 
Pip. Tos 2.3 -43.386 2.382 S 1 ; P ; D 
Pyr. Tos 5.9 -42.698 — S 1 ; P ; D 
n-But. Tos 23 -42.215 1.643 S 1 ; P ; D 
a Energy of lowest energy solution (kJ/Mol.). 
b Energy of lowest N A P A P - l i k e solution ("oo" if none) relative to absolute lowest. 
c Principal ligand-receptor interactions in lowest energy N A P A P - l i k e solution. Fea
tures in parenthesis are interactions not exhibited by N A P A P . 
d N A P A P . 
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distinctive hydrogen-bonding interactions in the SI-pocket, optimal penetration of the 
" D " or " P " pockets is harder to obtain and failure to probe the P-pocket is the reason 
why two of the ligands do not adopt full N A P A P - l i k e binding at all. In the scoring 
function used, there is no built-in penalty for hydrophobic groups which do not 
adequately fill cavities. The aryl groups may adopt a number of different positions 
within the D-pocket, in each case giving rise to a visually plausible fit but one in which 
the orientation is not always best. 

In addition, it appears to be difficult to pick up the P-sheet interaction. For the 
Tos-P-Acp and Tos-p-Ala series the chain is too long to match the peptidic link with 
residue Gly-216 effectively. On the other hand, with R2 substituents Tos and oc-Nas 
and P-Nas, there is no peptidic group or the chain is too short. In cases where the 
chain length should be appropriate, but the P-sheet is not formed, it may be due to 
inadequate exploration of the internal conformational flexibility of the ligand. In such 
circumstances, favourable binding must result from good positioning of the D - and P-
pocket groups. Therefore, it can be seen that attaining the p-sheet alignment is 
favourable, but extra stability may also be conferred if D/P-pocket fitting is 
simultaneously improved. 

For a given R2-group the other substituent combinations do not show a strong 
pattern of consistency. The docking energies for N A P A P - l i k e binding do not seem to 
differentiate convincingly between the morpholine and piperidine substituents at R l or 
between n-butyl and the others. This is understandable because there is very little 
steric distinction between these groups and the true discriminator of their observed 
behaviour is likely to be a strong preference for the piperidine group to lie close to the 
aryl sulphonic group. A longer-range interaction of that nature is hard for a scoring 
function to pick up. Additionally, we do not show clearly that n-butyl is a poor R l -
substituent, but there is a slight tendency in the results to disfavour morpholinyl. 

Whilst it would be unreasonable to expect that, in every example, the 
experimental data could be reproduced comprehensively, general trends in the results 
of a docking study could be persuasive in highlighting preferred substituents in a 
library. The thrombin study represents a modestly successful test case and shows that 
analog building coupled with docking calculations is a potentially useful way of 
discriminating between series of related ligands. 

Although the library considered here is small, it is of a convenient size to 
illustrate the principles of the approach. Libraries containing several hundred analogs 
have been created in similar ways during other applications of P R O _ A N A L O G to 
drug discovery projects at Proteus. Library generation itself takes merely a few 
seconds or minutes of computer time on a small desktop workstation, once the 
S U P E R - S M I L E S rules have been defined. Similarly, conversion of the library 
members to 3D form and subsequent geometry optimisation is not a rate-limiting step 
these days and can be carried out in a matter of minutes. The docking exercise is the 
most intensive part of the study and, for a thorough analysis, can cost an hour per 
ligand, but at this time it remains a critical method of validation. 

References 

1. Clark, D. E.; Frenkel, A. D.; Levy, S. A.; Li, J.; Murray, C. W.; Robson, B.; 
Waszkowycz, B.; Westhead, D. R., J. Comp.-Aid. Molec. Des., 1994, 9, 13 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
02

1

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



345 

2. Weininger, D. J. Chem. Inf. Comput. Sci., 1988, 28, 31-38 
3. Martin, Y. C.; van Drie, J. H. "Identifying Unique Core Molecules from the 

Output of a 3-D Database Search", in Chemical Structures 2, Ed. W. A. Warr, 
p. 315, (Springer-Verlag Berlin, 1993) 

4. Ho, C. M . W.; Marshall, G. R., J. Comp.-Aided Mol. Des., 1995, 9, 65-86 
5. Reaction Toolkit, Daylight Chemical Information Systems, Inc., Mission Veijo, 

CA, 1997 
6. Ball, J.; Fishleigh, R. V.; Greaney, P.; L i , J.; Marsden, A.; Piatt, E.; Pool, J. L.; 

Robson, B., in Bawden, D.; Mitchell, E. M. , (Eds.) Chemical Structure 
Information Systems: Beyond the Structure Diagram, Ellis Horwood, 
Chichester, 1990, p. 107 

7. Westhead, D. R.; Clark, D. E.; Murray, C. W. J. Comp.-Aided Mol. Des., 
1997, 11, 209-228 

8 Weininger, D.; Weininger, A.; Weininger, J. L. J. Chem. Info. Comp. Sci., 
1989, 29, 97 

9. Bone, R. G. A., paper in preparation. 
10. Milne, G. W. A.; Nicklaus, M . C.; Driscoll, J.S.; Wang, S.; Zaharevitz, D. 

National Cancer Institute Drug Information System 3D Database. J. Chem. 
Inf. Comp. Sci., 1994, 34, 1219; 
http://epnws1.ncifcrf.gov:2345/dis3d/3ddatabase/nci_smil.html 

11. http://www.daylight.com/dayhtmysmiles/smiles-isomers.htrnl 
12. Bone, R. G. A.; Firth, M . A.; Sykes, R. A. paper in preparation. 
13. Dalby, A.; Nourse, J. G.; Hounshell, W. D.; Gushurst, A. K. I.; Grier D. L.; 

Leland, B. A.; Laufer, J. J. Chem. Inf. Comp. Sci., 1989, 29, 172 
14. Johnson, M . A.; Maggiora, G., Concepts and Applications of Molecular 

Similarity; John Wiley and Sons, New York, 1990 
15. Stürzebecher, J.; Markwardt, F.; Voigt, B.; Wagner, G.; Walsmann, P. 

Thromb. Res., 1983, 29, 635-642 
16. Converter version 2.3, Biosym/MSI, San Diego, CA, 1993 
17. Brandstetter, H.; Turk, D.; Hoeffken, H. W.; Grosse, D.; Sturzebecher, J. 

Martin, P. D.; Edwards, B. F P.; Bode, W., J. Mol. Biol., 1992, 226, 1085 
18. Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M . D. 

[submitted], (1998) 
19. Eldridge, M . D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. 

J. Comp.-Aided Mol. Des., 1997, 11, 425-445 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
02

1

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 

http://epnws
http://www.daylight.com/dayhtmysmiles/smiles-isomers.htrnl


Chapter 22 

Is Rational Design Good for Anything? 

Donald B. Boyd 

Department of Chemistry, Indiana University—Purdue University at Indianapolis, 
Indianapolis, IN 46202-3274 

An overview is given of some documentable examples where rational 
approaches have been significantly influential in the drug discovery 
process. The scope of rational design is defined to include not only 
computational chemistry and structure determination, but also other 
nonrandom approaches. In contrast to the enumerated successes, a case 
study is used to illustrate how quantitative analysis can be used to reveal 
when a strategy for finding a drug may be untenable. An attempt is 
made to prognosticate the evolving role of rational design in the new era 
of combinatorial chemistry. 

Prior to the last few decades, the discovery of medicines was mainly an empirical 
endeavor. Relatively little was known about medically relevant biological targets and 
three-dimensional molecular structures of the receptors. Compounds were 
synthesized or obtained from natural sources such as plants or microorganisms found 
in soil and water samples. The compounds were tested for biological activity on 
whole organisms such as bacteria or laboratory animals. In those early days, it was 
not unheard of for a chemist to administer a newly synthesized compound to himself 
or his associates to learn what biological effects it had. 

Starting in the 1960s, increased understanding of how compounds exerted 
their biological effects made possible the testing of compounds in purified, isolated 
enzymes and other biochemical systems. The usual strategy was to use in vitro testing 
for preliminary evaluation of the compounds and then, on the more promising ones, 
use in vivo (animal) testing, which generally required more material to be synthesized. 
Most of the compounds being tested were laboriously synthesized one at a time. If 
sufficient compound was available, it could be broadly screened in assays set up to 
look for various kinds of biological activity. Regarding microorganisms as a source 
of drugs, isolation of materials from fermentation broths turned up the same active 
compounds over and over again, so by the early 1980s it became clear that this 
strategy was giving diminishing returns. 

The sheer labor intensity of the organic chemical and biological effort led 
gradually to greater interest in so-called rational design approaches such as analyzing 
quantitative structure-activity relationships (QSAR) or considering the mechanism of 

3 4 6 © 1999 American Chemical Society 
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an enzymatic reaction. The hope of these new approaches was that the odds of 
finding a useful compound would be increased. 

Pharmaceutical researchers knew from experience that the odds were very low 
for finding a useful drug by random screening. A n often quoted figure, which was at 
least qualitatively correct, was that 10,000 compounds had to be evaluated to find one 
that would become a medicine. Random screening was inefficient. Increasing 
numbers of scientists became convinced that rational approaches would help them 
focus on those parts of "compound space" (a term not then widely used) that would 
most likely lead to a new drug. 

Wi th advancing computer technology and improved methods for solving 
structures by X-ray crystallography and nuclear magnetic resonance ( N M R ) 
spectroscopy, the 1980s saw a growing interest in rational approaches. B y the early 
1990s, random screening appeared less and less'efficient, and the pendulum in 
pharmaceutical discovery research was swinging toward modern molecular modeling 
techniques (1,2,3) and iterative structure-based ligand design ( S B L D ) (4,5) as the 
most promising ways to discover the medicines of the future. 

However, about five years ago, a new technology appeared on the scene. 
Robotic systems run by computers made possible combinatorial chemistry (6) and 
high-throughput screening (HTS). Suddenly, the random approach was economically 
far superior to designing one compound at a time. Combinatorial chemistry and H T S 
went hand-in-hand: combinatorial chemistry made possible the generation of huge 
numbers of new compounds to feed into the screening machines, and H T S could run 
through the new combinatorial compound libraries at a voracious rate. In addition, 
old corporate compound libraries consisting of hundreds of thousands of materials 
could be mined quickly and economically. Often little or no consideration was given 
to the fact that the old compounds had been setting in bottles on shelves for years, i f 
not decades, and might no longer have the chemical structures marked on the labels. 
This does not matter in a random approach because the whole enterprise is founded on 
chance. In any case, hits from these old materials would have to be followed up by 
identification of the active component(s) and fresh syntheses. 

Looking at this brief history, we see that the pendulum was swinging toward 
rational design until a few years ago and now seems to have reversed course. W i l l 
rational design be abandoned in favor of the random approach for finding useful new 
bioactive compounds? Are rational design methods doomed to join slide rules and 
I B M punch cards in the technological scrap heap? Clearly, the answer to these 
questions is no, as evidenced by the work presented at the symposium on which these 
proceedings are based. Our goal in this brief space is to cite examples where rational 
approaches have been fruitful. We concentrate on compounds that have made it all the 
way to the pharmaceutical market. In addition, we give an example of a drug 
discovery project that had a rationale but lacked rationality, thereby dooming its 
prospect for success. Computer modeling detected the lack of rationality. 

W h a t Exac t ly Is Ra t iona l Design? 

When most researchers hear the term "rational drug design" they probably think in 
terms of using considerations of the three-dimensional structure of the ligands and/or 
their receptor to discover medically useful compounds. However, this is not the 
whole story. Rational design is a collection of approaches that do not depend on 
chance alone to succeed. 

Clearly, one facet of rational design includes the computational chemistry (7) 
techniques of (a) molecular modeling, (b) property prediction, such as by using 
quantum mechanics (8) or group additivity (9), (c) statistical modeling, such as using 
Q S A R correlations involving molecular descriptors to predict bioactivities of new 
structures (10), and (d) other algorithms, such as docking methods based on energy 
minimization (77) or genetic algorithms (12). Rational design need not necessarily 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ch
02

2

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



3 4 8 

involve predicting binding affinities by molecular mechanics or free energy 
perturbation theory (75). Performing molecular dynamics simulations is not 
synonymous with rational drug design. 

A second facet of rational design includes use of experimental and 
computational techniques for determining the three-dimensional structure of receptors. 
Thus, X-ray crystallography and multidimensional N M R spectroscopy are used to 
solve the structures of proteins, nucleic acids, and other biomacromolecules. 
Computing plays an important role here too because the experimental structures are 
now usually refined with the molecular dynamics technique of simulated annealing 
(14,15). Distance geometry, another computational chemistry technique (76), is used 
to transform NMR-der ived distance constraints into three-dimensional atomic 
coordinates. When an experimental structure is unavailable, homology modeling is 
often used to build a tentative three-dimensional structure based on a known protein 
structure with a similar amino acid sequence. 

Yet another important approach of rational design is using compound 
databases (libraries) to find interesting compounds. The two- or three-dimensional 
structures in these computer databases can be searched to retrieve, for instance, 
molecules that meet requirements for a particular pharmacophore, i.e., the minimal 
features of molecular structure that are essential for evoking an intended biological 
response. The libraries can also be analyzed by quantitative techniques to map the 
molecules in compound space based on some set of Q S A R descriptors (77). B y 
knowing how the compounds are distributed in this space, the diversity or similarity 
of the structures can be ascertained. Compound libraries, rather than individual 
compounds, can be "designed." 

A long-standing approach to finding an enzyme inhibitor is to consider the 
biochemical mechanism of action of the enzyme; drugs that are transition state analogs 
may result (18). Another facet of rational design is to try to devise a ligand that w i l l 
resemble a natural substrate. Thus, a peptidomimetic approach has been quite 
productive (79). 

A relatively new facet of rational design is genomics. Here the goal is to find 
specific associations between gene products and disease states, thereby making it 
possible to design drugs that w i l l block or stimulate those targets as appropriate. 
Handling al l the genetic sequences has given rise to another computer-based 
subdiscipline called bioinformatics. 

Thus, rational design encompasses many techniques and scientific disciplines 
including traditional medicinal chemistry (20). The main point of the term rational 
design is to differentiate its methods from blind screening, i.e., testing all compounds 
available or randomly selected ones. Unfortunately, the term "rational design" is 
upsetting to some traditional medicinal chemists because they think it implies that the 
research they have been doing was irrational. This implication is unintended. N . B . , 
many traditional medicinal chemistry studies have been entirely rational; they were 
based on a sound rationale and were carefully planned to test some hypothesis. 
Finally, it should not be forgotten that educated guesswork, intuition, trial and error, 
and plain old-fashioned luck have played a role in both rational and random drug 
discovery in the past and wi l l continue to do so in the future. 

W h a t Have Y o u Done for Us La te ly? 

Because of the wide use of the term "computer-aided drug design," computational 
chemists are often challenged about whether their computer-based approaches have 
actually designed a drug. Shown in Figure 1 are pharmaceutical products for which 
computing played a vital role in their discovery. The earliest example of such a 
compound, to the author's knowledge, is the antibacterial agent norfloxacin. 
Structural modifications that led the chemists at Kyor in Pharmaceutical Company to 
this compound were guided with the assistance of Q S A R (27). The compound has 
been on the market since 1983 under various brand names including Noroxin®. 
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Spurred by this advance, the 6-fluoro-quinolones became a major class of antibacterial 
agents. 

Among drugs entering the market more recently is dorzolamide hydrochloride, 
which is sold under the brand name Trusopt® by Merck for treatment of glaucoma 
(22). Iterative S B L D and ab initio molecular orbital calculations helped yield this 
carbonic anhydrase inhibitor. Molecular modeling, Q S A R , molecular shape analysis, 
and docking played a role in the discovery of donepezil hydrochloride, an 
acetylcholinesterase inhibitor (23). Eisai markets this compound as Aricept® for use 
in patients with Alzheimer's disease. Yet another example is losartan sodium. This is 
an angiotensin II receptor antagonist that was discovered at DuPont and has been sold 
by Merck under the brand name Cozaar® since 1995 for control of hypertension. 
Molecular modeling of the octapeptide angiotensin II and a lead compound from the 
patent literature have been repeatedly acknowledged (e.g., 24,25) for helping set the 
original direction for the structure-activity relationship (SAR) that was pursued by the 
medicinal chemists to a successful conclusion. A drug for migraine, zolmitriptan, is a 
5 - H T I D agonist; it was discovered at Wellcome and is marketed by Zeneca under the 
brand name Zomig®. Molecular modeling and the active analog approach helped 
define the pharmacophore (26). 

Figure 1. Chemical structures of compounds that reached the pharmaceutical 
market with the aid of rational approaches. 

Iterative S B L D has been quite successful in predicting inhibitors of human 
immunodeficiency virus (HIV-1) protease. The receptor site of this enzyme is rather 
deep, and much crystallographic data are available. In Figure 2, some of the marketed 
HIV-1 protease inhibitors are shown. Indinavir sulfate was designed with the help of 
X-ray crystallography and molecular mechanics calculations (27,28). Merck began 
marketing of this pharmaceutical in 1996 under the brand name Crixivan®. A second 
product is nelfinavir mesylate. Discovered at L i l l y and Agouron (29,30), the 
compound is being marketed as Viracept® by Agouron. 

Another rational design approach yielded the H I V - 1 protease inhibitor 
saquinavir. Considerations of the enzyme mechanism and the transition state of the 
substrate (31) led to a compound marketed by Roche first as Invirase® and more 
recently in a more potent dosage form as Fortovase®. A fourth inhibitor for treating 
A I D S is ritonavir, which was designed using a peptidomimetic strategy and is 
marketed by Abbott as Norvir® (32,33). 
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People outside of the pharmaceutical field sometimes ask i f any drug has ever 
been designed "from the ground up" by computational methods. The answer is not 
yet, at least not to the author's knowledge. The question itself, while legitimate, may 
reveal a lack of familiarity with the difficulties of the drug discovery process, which 
almost always has been - and probably w i l l continue to be - iterative and 
multidisciplinary. The medicinal chemist makes a compound, and the biologist and 
other scientists test it. This cycle is repeated many, many times because there are so 
many properties that a compound must exhibit (34) before it can be introduced into 
medical practice. 

Perhaps one of the closest ways computational chemistry could come to 
designing a molecule from the ground up is with de novo methods (35,36). Although 
these methods for finding or designing ligands are becoming more powerful all the 
time, it would take serendipity i f one of the hypothetical ligands, when synthesized, 
turned out to possess all the properties required to become a pharmaceutical product. 

Figure 2. Chemical structures of some marketed HIV-1 protease inhibitors that 
were discovered with the help of rational approaches. 

To keep an objective perspective of rational design, it is worth recalling that 
having good structural information for a target is no guarantee for success. Numerous 
investigators at pharmaceutical companies and elsewhere have applied S B L D for years 
to find new inhibitors that would block dihydrofolate reductase ( D H F R ) , a target 
related to oncolytic and anti-infective therapies. None of those many rational 
structural and modeling studies yielded a new medicine (37). Drug discovery is so 
challenging that no method works in every case. 
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Detecting the Lack of Rationality in a Project 

In this section, we present briefly an example of how the quantitative thinking of a 
computational chemist can detect that a medicinal chemistry project lacks rationality 
and therefore has little chance of success. This case study involved finding a drug for 
treatment of a central nervous system (CNS) disorder, whose exact nature is not 
germane to the principles we wish to illustrate. In some C N S projects, the scientists 
may have only a hypothesis about what effect a compound w i l l have on a human 
brain. W i l l the compound treat depression? Be hallucinogenic? Be an anxiolytic? 
Improve cognitive scores? Reduce appetite? Bluntly put, the old paradigm was often 
to find a compound hypothesized to have some C N S effect and meeting safety 
requirements for clinical testing, to test it in humans, and then to see empirically what, 
i f any, desirable pharmacological activities it may exhibit. After such a C N S 
compound was approved for marketing, additional uses for it, with luck, might show 
up when prescribed to a wider patient population. 

The case study discussed here was not based on the old C N S paradigm. 
Rather, the specific disease for which the compound was being sought was known, 
and a well thought out approach was being followed to find an inhibitor of an enzyme 
hypothesized to be related to a pathology. Traditional medicinal chemistry was used, 
i.e., screening was used to find some low-level leads, and then a standard repertoire 
of chemistry explored the S A R around several leads. One-compound-at-a-time 
custom synthesis was used. The medicinal chemists decided what new compounds to 
make based on their many years of combined experience and on the activity (potency) 
data they were getting back from the biologists. 

One of the first things that was checked when a computational chemistry 
perspective was brought to bear on this project was the biological data. There were 
two assays operative. A primary one was based on in vitro inhibition of the target 
enzyme. A secondary assay evaluated compounds in a whole cell system to detect 
levels of the peptide thought to be related to the enzyme's action. Comparing data 
from the two assays gave the type of scatter shown in Figure 3. It was immediately 
apparent that a fundamental flaw existed in the project's screening tactics. There was 
no salutary correlation between the data from the two assays! If both assays were 
associated with the same target, then the data points should have shown more of a 
relationship. The biologists running the assays had convinced themselves, based on 
their earlier work, that a strong correlation existed, but apparently no one had actually 
checked this thoroughly. A quantitative approach thus provided fresh insight, albeit 
unwelcome news. 

Another factor besides potency that has to be considered in a drug discovery 
project is distribution of the compound to the site of action in the body of the patient. 
For a compound to be CNS-active, it must be able to cross the blood-brain barrier 
( B B B ) . There are some general ideas about what physical properties a compound 
must exhibit in order to be able to cross the B B B , but there are no hard and fast rules. 
One helpful clue, however, comes from Q S A R investigators who showed that many 
drugs that are able to reach the C N S are lipophilic and have an ionizable group such 
that the compounds exhibit an octanol-water distribution coefficient ( logD 0 /w) in the 
range 1.5 - 2.5 (38). 

The compounds that had been synthesized and tested in this case study were 
checked to see i f they met the l o g D 0 / w criterion. The C L O G P program (39,40) was 
used to compute octanol-water partition coefficients, which for these compounds were 
the same as distribution coefficients because the compounds had no groups that would 
be ionized near physiological p H . The results are shown in Figure 4. A s is 
immediately obvious, the vast majority of the compounds lack a sufficiently low 
distribution coefficient. Less than 5% of the compounds are near the desirable range. 
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Thus, most of the compounds are so lipophilic that their prospects of crossing the 
B B B and getting to their intended target is not good. 

enzyme assay, IQ 50 

30 

, microMolar 

Figure 3. Distribution of biological data from primary (enzyme) and secondary 
(whole cell) assays used to evaluate compounds being synthesized. Data from the 
primary screen were reported as percent inhibition. Data from the secondary 
screen were reported as concentration of compound required for 50% inhibition of 
production of the supposed product of the enzyme. 

This example shows how scientists can be so focused on their routine and 
their goal (primarily increasing potency) that they neglect to use simple quantitative 
tools at their disposal to learn i f their approach is rational. If it is not rational, then 
discovery research resources (personnel) can be redeployed in directions with a 
greater chance of success in finding a drug. The point is that a computational 
perspective can empower scientists working on a project by supplying important 
information. 
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0 1 2 3 4 5 6 7 8 9 

Figure 4. Histogram of the distribution of computed l o g D 0 / w values for 
compounds being synthesized to explore the S A R . Less than 5% of the 
compound population had l ogD 0 /w values less than 3 (unshaded bar). A t the peak 
of the histogram, more than 15% of the compound population had l o g D 0 / w 
between 5.5 and 6.0. Many compounds were even above 6, i.e., they were 
extremely lipophilic. 

Ou t look for Ra t iona l Design 

Predicting the future is treacherous. Several years before the dawning of the age of 
combinatorial chemistry and H T S , the well-respected former editor of the Journal of 
Medicinal Chemistry wrote (41): "The time of random structural variations in 
molecular modification ... is past." It has not turned out like this. Combinatorial 
chemistry and H T S have carried the hit-or-miss approach to a technological pinnacle 
unimaginable a few years ago. 

To put the combinatorial chemistry/HTS approach in perspective, it helps to 
use an analogy: trying to discover a drug is as difficult as looking for a needle in a 
haystack. With combinatorial chemistry and H T S , the philosophy is to create a bigger 
"haystack" in hopes that a useful compound w i l l be somewhere in it. In contrast, the 
philosophy of rational design is that the odds of finding a useful compound can be 
beat, and the goal is to reduce the size of the haystack! 

It is not necessary to ask whether one philosophy is better; clearly both 
random and rational approaches can and should be used. A s mentioned, 
combinatorial chemistry need not be a completely random enterprise; compound 
libraries can be rationally designed using Q S A R techniques to produce structures in 
specific volumes of multidimensional molecular descriptor space so as to f i l l 
unexplored "voids" in an S A R or in a region around a lead compound. Because of the 
quantity of data that has to be tracked, stored, retrieved, and analyzed, information 
management underlies the modern random approach. So with either a random or 
rational approach, computing is vital. In fact, the term "computer-aided drug design" 
could take on a much broader meaning. 

Rational approaches, many of which are based on modern computer 
technology, are helping to stimulate ideas and test hypotheses for new ligands. 
Computational and structural chemists can now point to specific examples where their 
approaches have proved useful in helping medicines reach patients. This chapter and 
these proceedings confirm that rational design is contributing not only good science, 
but also pharmaceutically interesting compounds. The answer to the question posed 
in the title of this chapter is clearly yes, rational design is good for finding those 
elusive needles in the haystack. Looking toward the future, we see an increasing 
proportion of the newly approved pharmaceuticals being discovered with the aid of 
rational design approaches. 
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Figure 2. A Common feature hypothesis for NT inhibitors 
derived by Catalyst. Hydrogen bond donor (magenta), 
hydrogen bond acceptors (green) and ring aromatic (yellow) 
are the features in the hypothesis. 
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NBMPR N°-(4-nitrobenzyl)thioinosine ( fit=5.0 ; E c o nf=2.39 kcal/mol) 
2'-deoxy-6-N-(4-nitrobenzyl)adenosine ( fit=3.67;Econf=5.11 kcal/mol) 

Figure 3. NBMPR and 2'-deoxy-6-N-(4-nitrobenzyl) adenosine 
mapped onto the hypothesis. 
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Figure 4. A hit from a search on the NCI database (267224) 
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Figure 6. Mapping of the chemical features of etoposide and 
teniposide on the common feature hypothesis. 
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Figure 7. Mopidamole and Carminate from the database of 
Derwent World Drug Index having the proposed 
pharmacophoric features. 
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Figure 4. DISCO-derived Ζ and C superimposition models for CP55244 and 
WIN55212-2. The pharmacophore features of the reference molecule 
(WIN55212-2) are represented as red spheres and those of CP55244 are 
represented as blue spheres. CP55244 is colored by atom type while 
WIN55212-2 is colored in purple (4a: Ζ model) and in orange (4b: C model). 
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Figure 6. C o M F A steric maps (sterically favored regions in green and sterically 
disfavored regions in yellow) and electrostatic maps (positive charge favored in 
blue and negative charge favored in red) of the Ζ and C superimposition models. 
CP55244 and WIN55212-2 are colored in orange and by atom type. CP55244 is 
colored by atom type while WIN55212-2 is colored in purple (6a: Ζ model) and 
in orange (6b: C model). 
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Figure 6. Continued. 
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Figure 11. Crystal structure o f compound D6 in the active site of HIV-1 
protease. The inhibitor is shown in thick sticks. A l l atoms are colored according 
to the atom-types (C: green, O: red, N : blue, S: yellow). 
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Figure 4. HQSAR model interpretation for four members of the Endothelin data 
set. 
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Figure 6. Analysis of the MCSS results of the N-terminus S H 2 domain of 
SHPTP2 with methanephosphonic acid as the ligand. 
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Figure 7. An M C S S deduced pharmacophore model for the S H 2 domain 
phosphotyrosine binding pocket of SHPTP2 protein. 
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pharmacological activity associated 

with adenosine receptor activation, 
108 

purine catabolic pathway, 108/ 
therapeutic window, 108 
vast array of pharmacological effects, 

107-108 
Adenosine monophosphate deaminase 

( A M P D A ) 
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C o M F A (Comparative Molecular 
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3 6 0 

three-dimensional structure of highly 
optimized candidate, 83/ 

See also SMoG 
Charge Model 1 (CM1), zero-order 

charges by Mulliken analysis, 124 
Charge Model 2 (CM2) 
partial atomic charges and dipole 

moments for P-propiolactone, 1251 
predictions for p-propiolactone, 125 
zero-order charges by Lowdin 

analysis, 124-125 
C H A R M M 
force field within Q U A N T A program for 

energy minimization, 186, 189 
interface of multi-body order (N) 

dynamics with C H A R M M molecular 
modeling program, 91 

minimization of protein-ligand complex 
with C H A R M M empirical potential, 
76 

parameter set for protein receptors, 16 
quantitative analysis of first and 

second generation CD4 candidates, 
81r 

See also HIV-1 protease inhibitors 
(Pis); S M o G 

Chemical Monte Carlo/molecular 
dynamics ( C M C / M D ) technique 

theory, 40-41 
See also Free energy calculation 

methods; HIV-1 reverse 
transcriptase (RT) TIBO inhibitors 

Chirality 
H Q S A R parameter, 216-217, 222 
See also Molecular Hologram Q S A R 

( H Q S A R ) 
a-Chymotrypsin 
comparison of G O L D fitness score with 

binding data, 280, 281/ 
See also G O L D (genetic optimization 

for ligand docking) 
Coarse-graining 
knowledge-based potential method, 

71-72 
search algorithm method, 72-73 
See also SMoG 

Collagenase 
charge-charge interactions, 64-66 
hydrogen-bond strength, 60-62 
member of matrix metalloproteases 

(MMPs), 54-55 
schematic structure of bound 

hydroxamate inhibitor and relative 
H-bond strength for each N H and CO 
group, 62/ 

See also Finite difference solution to 
linearized Poisson-Boltzmann 

equation and solvation entropy 
correction (FDPB + SEC) 

Combinatorial chemistry 
advances in, and related fields of high-

throughput screening, 226 
application of evolutionary algorithms 

to combinatorial libraries and 
molecular diversity, 263 

computational and database aspects, 
227-230 

construction and management of virtual 
libraries, 227 

docking combinatorial libraries with 
genetic optimization for ligand 
docking (GOLD), 282-289 

example of chemically unplanned 
combinatorial library, 233/ 

example of combinatorial library of 
cyclic tertiary diamines registered 
under M D L project library-central 
library construct, 228/ 

examples showing effect of using 
different physicochemical descriptors 
on range of calculated properties in 
selecting compounds in clustering 
algorithm, 23If 

experiments of G O L D using library of 
acids and amines, 282, 284-286 

experiments of G O L D using library of 
sulphonyl chlorides and amines, 286, 
288-289 

focused libraries using pharmacophore 
hypothesis, 232-233 

focused libraries using protein 
structure and Multiple Copy 
Simultaneous Search (MCSS) 
computational method, 234-236 

focused library, 227 
generating combinatorial library for 

given biological target, 226-227 
hypothetical reaction scheme for 

combinatorial library of tertiary 
amines, 230/ 

improvement of combinatorial libraries 
using other technologies, 230-236 

information technology, 227 
lead generation and optimization 

process in context of combinatorial 
chemistry, 229/ 

MCSS deduced pharmacophore model 
for phosphotyrosine binding pocket of 
SHPTP2 protein, 235/ 

pharmacophoric groups necessary for 
matrix metalloproteinase (MMPs) 
activity, 232/ 

possible by robotic systems running 
computers, 347 
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361 

P R O _ A N A L O G for combinatorial 
library building, 339 

project library-central library 
construct of MDI^ISIS, 227 

reaction planning, reagent searching 
and screening, 228, 230 

reagent diversification, 230 
reduced dimensionality application for 

site-directed combinatorial 
libraries, 294 

site-directed combinatorial library 
design, 307 

small molecule lead generation and 
optimization, 227-228 

steps for building virtual combinatorial 
structures by altering R groups, 233 

successive search of reagents to design 
combinatorial library to attain pharma
cophoric geometry, 236/ 

types of combinatorial libraries, 
226-227 

universal library, 227 
virtual libraries and virtual screening, 

231-232 
visual analysis of MCSS results 

available through Quanta software, 
235/ 

See also G O L D (genetic optimization 
for ligand docking); Reduced 
dimensionality in ligand-protein 
structure prediction 

Comparative Molecular Field Analysis 
( C o M F A ) 

comparison of HQSAR with 3D-QSAR, 
primarily C o M F A , 220, 221* 

widely used 3D-QSAR technique, 3 
See also E V A (eigenvalue) QSAR 

method; QSAR methods 
Computer-aided drug design 
hydration free energy calculations, 

112-113 
relative hydration of carbonyl-

containing compounds, 113* 
Computer-aided molecular design 
widespread application of evolutionary 

algorithms, 255-256 
See also Evolutionary algorithms in 

computer-aided molecular design 
( C A M D ) ; P R O A N A L O G 

Conformational changes. See Finite 
difference solution to linearized 
Poisson-Boltzmann equation and 
solvation entropy correction (FDPB + 
S E C ) 

Connections 
HQSAR parameter, 216-217, 222 
See also Molecular Hologram QSAR 

( H Q S A R ) 

C O N S O L V program 
application of evolutionary algorithms, 

264 
seeking to predict water locations 

within enzyme active sites, 264 
Crystallographic Information File 
(CIF) format representation of covalent 
attack sites, 296-297 
Cyclic lactam-based inhibitors 
design for HIV-1 protease, 191, 195 
See also HIV-1 protease inhibitors 

( P i s ) 

D 

Database mining 
application of K N N method to estrogen 

receptor ligands, 208 
flow chart for algorithm, 205/ 
method, 202, 204 
using estrogen receptor ligands as 

probe molecules, 208-210 
using similarity to a probe, 208-210 
See also QSAR methods 

Databases for searching. See 
Nucleoside transport (NT) inhibitors 

DelPhi, solving finite difference 
approximation of linearized Poisson-
Boltzmann equation, 26 

De novo molecular design methods 
application of evolutionary algorithms, 

262 
generation of new lead compounds, 5 
See also SMoG 

DISCO module (distance comparision 
technique) 

extracting common pharmacophoric 
elements from cannabinoids and 
aminoalkylindoles (AAIs), 168 

superimposition of CP55244 and 
WIN55212-2, 169, 176 

See also Cannabinoids and 
aminoalkylindoles (AAIs) 

Docking problem 
computational prediction of binding 

geometries of compounds in protein 
active site, 292-293 

reducing number of degrees of freedom, 
292-293 

See also G O L D (genetic optimization 
for ligand docking); Ligand-receptor 
docking; Reduced dimensionality in 
ligand-protein structure prediction 

Drug design 
challenges, 2-3 
traditional, 1-2 
See also Computer-aided drug design; 

Rational drug design (RDD) 
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3 6 2 

Drug discovery and optimization, 
overview and introduction, 12-14 

Drug resistance 
binding specificity of HIV and FIV 

proteases, 24-29 
development of resilient compounds, 14 
energetic basis of binding specificity, 

27-29 
energy function for binding energy 

analysis, 26-27 
HIV-1 protease and analogous feline 

version, F IV protease, 14 
homology and specificity, 25 
modeling HIV protease-ligand LP149 

complex, 25-26 
search for atomic origins of resistance, 

14 
See also HIV and FIV proteases 

Drug-target scheme, basic tasks, 2 
^.-Dynamics 
approach for evaluating ligand binding 

affinity, 29-34 
cumulative X running average of 

benzamidine derivatives complexes 
with trypsin as function of simulation 
time, 32/ 

free energy calculations and ligand-
receptor screening, 14 

free energy surface between /?-amino-
benzamidine and p-methyl-
benzamidine in unbound state, 33 / 

method from first principles, 30-31 
model system and simulation protocol, 

31-32 
precise free energy changes, 33-34 
rapid identification of ligands with 

favorable binding free energy, 34 
screening calculations, 32-33 
See also Free energy calculation 

methods 

E 

Eigenvalue (EVA) QSAR method. See 
E V A (eigenvalue) QSAR method 

Electrostatic binding. See Finite 
difference solution to linearized 
Poisson-Boltzmann equation and 
solvation entropy correction (FDPB + 
S E C ) 

EPDOCK, docking program application 
of evolutionary algorithms, 261-262 

Estrogen receptor ligands 
application of K-nearest neighbor 

(KNN) method, 208 
comparison of hit rates for known 

ligands for ideal, random, and 

similarity based database mining, 
209/ 

predicted versus actual activity 
obtained from a 10-descriptor K N N -
QSAR model, 209/ 

probe molecules in database mining, 
208-210 

See also QSAR methods 
E V A (eigenvalue) QSAR method 
advantage of E V A over Comparative 

Molecular Field Analysis (CoMFA) 
for QSAR purposes, 319 

analogous C o M F A model as 
benchmark for effectiveness of E V A 
descriptor, 317 

applications of E V A descriptor in 
QSAR/QSPR studies, 316-319 

blind variable selection sampling 
phenomenon, 321 

characteristics of E V A descriptor, 
322-324 

conformational sensitivity of E V A 
descriptor, 324 

determination of E V A descriptor, 
313-316 

effect of varying sigma term of E V A 
descriptor, 320/ 

E V A descriptor generation parameters, 
319-322 

E V A descriptor profile for steroids 
estradiol and deoxycortisol, 323/ 

E V A G A (genetic algorithm) method, 
327 

Gaussian standard deviation (o), 
319-321 

general applicability of descriptor and 
robustness of resultant QSAR 
models, 327-328 

other areas for E V A development, 328 
placing Gaussian kernel of fixed 

standard deviation (a) over each 
vibrational frequency, 314 

plot of most significant variables in 
E V A PLS analysis, 325/ 

profile of E V A curve for three arbitrary 
vibrational frequencies, 315/ 

projection of frequency values onto 
bounded frequency scale (BFS), 314 

QSAR model interpretation, 324-326 
QSPR study of data set consisting of 

heterogeneous set of 135 small 
organic chemicals, 316-317 

rationale, 313 
recent developments, 326-327 
robustness of E V A partial least 

squares (PLS) models, 317, 319 
sampling E V A function at fixed 

increments along BFS, 316 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ix
00

2

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 
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sampling increment (L) parameter, 
321-322 

selection of localized a values across 
spectrum, 326-327 

summary of E V A QSAR analyses for 
different sources of normal 
coordinate frequencies, using default 
E V A descriptor generation 
parameters and comparison with 
CoMFA, 317, 318* 

theoretically-based descriptor from 
calculated, fundamental molecular 
vibrations, 313, 327 

variable influence on projection (VIP) 
score, 324-326 

Evolutionary algorithms in computer-
aided molecular design ( C A M D ) 

class of search and optimization 
algorithms inspired by natural 
selection mechanisms, 256-257 

combinatorial libraries and molecular 
diversity applications, 263 

C O N S O L V program seeking to predict 
water locations within enzyme active 
sites, 264 

crossover and/or mutation operators, 
257-258 

data mining within information 
databases, 266 

de novo molecular design application, 
262 

developing basic theory of evolutionary 
algorithms, 266 

E P D O C K docking application with 
evolutionary programming, 261-262 

evolutionary programming, 258-259 
FINGAR and G A R A N T programs for 

assignment and refinement of N M R 
spectra data, 264 

future directions, 265-267 
GASP program for pharmacophore 

elucidation and flexible molecular 
overlay, 264 

genetic algorithms, 257-258 
G E R M program for generation of 

receptor models from sets of overlaid 
structures, 264 

G O L D (genetic optimization of ligand 
docking) docking program, 260-261 

hybridizing with other search and 
optimization algorithm types, 
266-267 

implementation issues, 259-260 
leading selves to parallelization, 266 
miscellaneous applications, 264 
number of publications in C A M D using 

evolutionary algorithms, 256/ 
pros and cons, 264-265 

protein-ligand docking application, 
260-262 

QSAR application, 262-263 
review of current applications, 260-264 
selection operators, 257 
subject of self-adaptation, 266 
three main groups, 256 
tournament selection, 258 

F 

Feline immunodeficiency virus (FIV). 
See HIV and FIV proteases 

F INGAR program 
application of evolutionary algorithms, 

264 
assignment and refinement of N M R 

spectral data, 264 
Finite difference solution to linearized 

Poisson-Boltzmann equation and 
solvation entropy correction (FDPB + 
S E C ) 

accumulated energy difference for 
thrombin and collagenase with 
counter charge at active sites, 65/ 

application to electrostatic binding of 
ABP-sugar, 57-59 

application to hydrophobic interactions, 
59- 60 

calculated binding energy difference 
versus experiment for phosphorus-
containing inhibitors, 60f, 61/ 

calculation setup, 57 
charge-charge interactions for thrombin 

and collagenase, 64-66 
conformational change application, 

62-64 
electrostatic calculation, 55-56 
FDPB solution, 56 
hydrogen-bond strength application, 

60- 62 
ionic binding application, 64-66 
ligand-based design, 66-67 
limitations in application, 67 
non-electrostatic energy calculation, 

56-57 
principle of FDPB for electrostatic 

binding energy calculations, 54 
receptor-ligand binding affinity 

determination, 53-54 
SEC derivation, 57 
structure and schemes for computing 

energy difference between 
conformationally different ligands, 
63/ 

sugar binding free energy differences 
and their components for A B P , 5St 
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theory and method, 55-57 
thermolysin inhibitors, 59-60 
See also Collagenase; Thermolysin 

inhibitors 
Focus—2D 
flow chart of algorithm for targeted 

library design, 203/ 
library design using pre-constructed 

QSAR models, 202 
using QSAR equation, 206-208 
See also QSAR methods 

Focused libraries 
combinatorial library, 227 
protein structure and Multiple Copy 

Simultaneous Search (MCSS) 
computational method, 234-236 

using pharmacophore hypothesis, 
232-233 

See also Combinatorial chemistry 
Free energy calculation methods 
chemical Monte Carlo/molecular 

dynamics (CMC/MD) theory, 40-41 
free energy derivatives (FED) theory, 

39 
generalized Born 

approximation/solvent accessible 
area (GB/SA) theory, 41-42 

methods for HIV-1 RT and its TIBO 
inhibitors, 43-45 

methods for ligand binding or protein 
stability, 37-38 

methods for T4 lysozyme, 42—43 
pictorial representation of free energy 

changes (PROFEC) theory, 40 
Poisson-Boltzmann continuum 

electrostatics/solvent accessible 
area (PB/SA) theory, 41-42 

thermodynamic cycles theory, 38-39 
thermodynamic integration (TI) theory, 

39 
See also HIV-1 reverse transcriptase 

(RT) TIBO inhibitors; T4 lysozyme 
Free energy derivatives (FED) 
Coulombic and Lennard-Jones 

interaction energies, 39 
estimation of free energy changes, 37 
theory, 39 

Free energy difference between ligand 
and receptor, discriminator in binding 
affinity assays, 14 

Free energy perturbation (FEP) 
ligand binding, 37 
predicting binding affinities of ligands, 

6-7 

G 

G A R A N T and GASP programs 

application of evolutionary algorithms, 
264 

assignment and refinement of N M R 
spectral data, 264 

Gaussian curvature 
classifying shapes on molecular 

surface, 242-243 
See also Shape 

Gaussian standard deviation (a) 
E V A descriptor generation parameter. 

319-321 
See also E V A (eigenvalue) Q S A R 

method 
Generalized Born 

approximation/solvent accessible 
area ( G B / S A ) 

solvation free energies of ligands, 38 
theory, 41-42 
See also Free energy calculation 

methods 
Genetic algorithm-partial least squares 

( G A - P L S ) method 
algorithm of method, 199-200 
development of QSAR model, 204, 206 
summary of statistics for G A - P L S for 

28 bradykinin (BK) peptides, 206* 
See also QSAR methods 

Genetic algorithms 
crossover and/or mutation operators, 

257-258 
genetic operators, 257 
main group of evolutionary algorithms, 

257-258 
selection operator, 257 
See also Evolutionary algorithms in 

computer-aided molecular design 
( C A M D ) ; G O L D (genetic 
optimization for ligand docking) 

G E R M program 
application of evolutionary algorithms, 

264 
generation of receptor models from sets 

of overlaid structures, 264 
G L O B A L 2 programming language 
Prometheus software environment, 333 
See also P R O _ A N A L O G 

G O L D (genetic optimization of ligand 
docking) 

acid and amine library, 286* 
automated program using genetic 

algorithm, 272 
binding ligand groups to charged 

solvated residues, 274—275 
a-chymotrypsin test system, 280 
comments on activity studies, 280, 282 
comments on library docking 

experiments, 289 
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comparison of fitness score with binding 
data, 277-282 

crystal structure of methotrexate bound 
to dihydrofolate reductase (DHFR), 
283/ 

current results of 100 test systems, 275, 
277 

distributions for ester and alkyl 
torsions, 276/ 

docking combinatorial libraries, 
282-289 

docking program application of 
evolutionary algorithms, 260-261 

experiments using library of acids and 
amines, 282, 284-286 

experiments using library of sulphonyl 
chlorides and amines, 286, 288-289 

extending test suite from 100 to 134 
complexes, 272-273 

improving algorithm, 273-277 
increased van der Waals weighting, 

273-274 
influenza A neuraminidase (NA) test 

system, 277, 279/ 
plot of G O L D fitness score against IC 5 0 

values for N A ligands, 277, 278/ 280 
plot of G O L D fitness score against Kj 

values for a-chymotrypsin ligands, 
281/ 

prediction for sulphonyl chloride, 
amine and product in lipase, 290/ 

predictions by G O L D for acid, amine 
and product in lipase, 287/ 

re-mapping chromosome, 275 
results of docking predictions on data 

set of 134 complexes, 273/ 
shape fitting, 274 
sulphonyl chloride and amine library, 

288/ 
summary of acid and amine library 

experiments, 285/ 
summary of sulphonyl chloride and 

amine library experiments, 288/ 
torsional distributions, 275 
validations studies revealing 

weaknesses in predictions, 272 

H 

Heteroaromatic compounds 
calculated relative hydration free 

energies of 4-substituted pteridines, 
115/ 

calculation of bond separation energies 
for hydrated and anhydrous forms of 
9-methyl purine and pteridine, 116 

calculation of relative inhibitor 
potencies, 117-119 

hydration, 114-119 
inhibitory potential of purine riboside 

and its 8-aza analog, 119/ 
purine versus pteridine hydration, 116/ 
relative hydration, 114/ 
See also Hydration free energy 

differences 
High-throughput screening 
advances in related fields, 226 
possible by robotic systems running 

computers, 347 
See also Combinatorial chemistry 

HIV-1 protease, unbinding pathways 
from 

aspartyl protease center of drug 
discovery research, 88 

opening and closing of flexible p 
hairpin structures (flaps), 88 

schematic of HIV protease with A74704 
ligand, 89/ 

unbinding pathways of inhibitor Cbz-
Val-Phe-Phe-Val-Cbz (A74704) 
from aspartyl protease, 87 

See also Multi-body order (N) 
dynamics (MBO(N)D) 

HIV-1 protease inhibitors (Pis) 
amprenavir, candidate undergoing 

advanced clinical trials, 185-186 
C H A R M M force field within Q U A N T A 

program for energy minimization, 
186, 189 

chemical structure of amprenavir ( V X -
478), 187/ 

chemical structures of compound A 
(close analog of amprenavir) and 
compound B (new carbamate 
inhibitor), 187/ 

chemical structures of cyclic carbamate 
inhibitor C I and linear analog C2, 
194/ 

crystal structure of compound D6 in 
active site of HIV-1 protease, 195, 
196/ 

design of cyclic lactam-based 
inhibitors, 191, 195 

electron density of inhibitor VB-13,674 
(close analog of compound B l ) , 192/ 

five-membered cyclic carbamates with 
different P2 side-chains, 194/ 

indinavir, ritonavir, saquinavir, and 
nelfinavir by rational design 
approach, 349, 350/ 

Kj values of cyclic lactam based 
inhibitors, 195/ 

linear carbamate based inhibitors, 186 
modeling linear carbamates, 186, 189 
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prediction by iterative structure-based 
ligand design (SBLD), 349 

stereo diagram of first model of 
compound B l overlapped with crystal 
structure of compound A in active site 
of HIV-1 protease, 190/ 

stereo diagram of overlap of crystal 
structures of VB-13,674 and 
compound A , 193/ 

stereo diagram of overlap of model of 
cyclic carbamate with crystal 
structures of VB-13,674, 193/ 

stereo diagram of second model of 
compound B l overlapped with crystal 
structure of compound A in active site 
of HIV-1 protease, 190/ 

stereoisomers (compounds B l and B2) 
of linear carbamate inhibitor with 
phenethyl side-chain at PI , 188/ 

structural analysis of linear 
carbamates, 189, 191 

HIV-1 reverse transcriptase (RT) 
TIBO inhibitors 

adaptive chemical Monte 
Carlo/molecular dynamics 
( C M C / M D ) , 44 

C M C / M D theory, 40-41 
force field parameters for TIBO 

derivatives, 43-44 
free energy calculation methods, 43-45 
free energy calculations by 

thermodynamic integration (TI), 45 
Poisson-Boltzmann (PB) calculations, 

44-45 
ranking TIBO derivatives by both 

C M C / M D and PB calculations, 50 
relative binding affinity for series of 

inhibitors, 47-50 
results of adaptive C M C / M D and PB 

calculations, 47-48 
results of thermodynamic integration 

(TI) free energy calculations, 48, 50 
selected set of TIBO derivatives, 48t, 

49/ 
setup and equilibration of 8C1-TIBO in 

solution, 44 
setup and equilibration of HIV-1 RT in 

complex with 8C1-TIBO, 44 
HIV and FIV proteases 
average per-atom contributions to van 

der Waals (vdW) component of 
intra-ligand energy, 28/ 

binding specificity, 24—29 
energetic basis of binding specificity, 

27-29 
energetic comparison of protease-

LP149 complexes, 27* 
homology and specificity, 25 

interaction and electrostatic 
desolvation energy for Asp30/Ile35 
backbone position, 29* 

modeling HIV-ligand LP149 complex, 
25-26 

PDB accession codes of HIV protease 
complexes, 25* 

structural and energetic comparison of 
models of HIV protease-indinavir 
complex, 26* 

HQSAR. See Molecular Hologram 
Q S A R (HQSAR) 

Huffman model 
superimposition model, 167 
See also Cannabinoids and 

aminoalkylindoles (AAIs) 
Human immunodeficiency virus (HIV). 

See CD4 protein; Drug resistance; 
HIV-1 protease, unbinding pathways 
from; HIV-1 protease inhibitors 
(Pis); HIV-1 reverse transcriptase 
(RT) TIBO inhibitors; HIV and FIV 
proteases 

Human osteoclast cathepsin K 
inhibition. See Cathepsin K inhibition 

Hydration free energy differences 
agreement for azanaphthalene 

compounds, 115 
A M B E R program for molecular 

dynamics, molecular mechanics, and 
TCP calculations, 117-118 

calculation of relative inhibitor 
potencies, 117-119 

differences in purine and pteridine 
hydration, 115-116 

factors accounting for loss in binding 
affinity, 118-119 

hydration free energy calculations, 
112-113 

hydration of heteroaromatic 
compounds, 114-119 

inhibitory potential of purine riboside 
and 8-aza analog, 119* 

relative hydration of heteroaromatic 
compounds, 114* 

TCP cycles for relative solvation and 
binding free energies, 118/ 

thermodynamic cycle perturbation 
(TCP) approach, 112 

See also Adenosine monophosphate 
deaminase ( A M P D A ) 

Hydrogen-bond strength. See Finite 
difference solution to linearized 
Poisson-Boltzmann equation and 
solvation entropy correction (FDPB + 
S E C ) 

Hydrogens 
HQSAR parameter, 216-217, 222 
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See also Molecular Hologram Q S A R 
( H Q S A R ) 

Hydrophobic effect, modeling, 71 
Hydrophobic interactions. See Finite 

difference solution to linearized 
Poisson-Boltzmann equation and 
solvation entropy correction (FDPB + 
S E C ) 

I 

Influenza A neuraminidase (NA) 
comparison of G O L D fitness score with 

binding data, 277-280 
See also G O L D (genetic optimization 

for ligand docking) 
Information technology 
combinatorial chemistry, 227 
See also Combinatorial chemistry 

Ionic binding. See Finite difference 
solution to linearized Poisson-
Boltzmann equation and solvation 
entropy correction (FDPB + SEC) 

K 

K-nearest neighbors (KNN) QSAR 
method 

calculation of q 2 , predictive power of 
current K N N - Q S A R model, 202 

flow chart of algorithm for constructing 
K N N - Q S A R model, 201/ 

QSAR based on K N N principle, 
200-202 

See also QSAR methods 

L 

Lactam-based inhibitors. See HIV-1 
protease inhibitors (Pis) 

Lactam-based inhibitors (cyclic), 
design for HIV-1 protease, 191, 195 

Lead generation, de novo molecular 
design methods, 5 

Libraries. See Combinatorial chemistry 
Ligand-based design 

FDPB + SEC model for qualitative 
prediction, 66-67 

See also Finite difference solution to 
linearized Poisson-Boltzmann 
equation 

and solvation entropy correction 
(FDPB + SEC) 

Ligand binding affinity 

evaluating by novel ^-dynamics 
approach, 29-34 

See also X-Dynamics; Finite 
difference solution to linearized 
Poisson-Boltzmann equation and 
solvation entropy correction (FDPB 
+ SEC) 

Ligand conformation 
active site and free in solution, 21-24 
assessing similarity metrics, 21-23 
comparison of low energy structures 

with same anchor point position, 24f 
comparison of similarity metrics, 23 
protein-ligand complexes, 21-22 
results for anchor point distance metric, 

24* 
results for torsion angle metric, 23/ 
similarity of bound and unbound 

conformations of ligands, 24 
See also Ligand-receptor docking 

Ligand design methodology 
SMoG approach, 74-77 
stages, 75/ 

Ligand-protein structure prediction. See 
Reduced dimensionality in ligand-
protein structure prediction 

Ligand-receptor docking 
approaches to solving docking problem, 

271-272 
comparison of docking for different 

parameter sets, 19/ 
critical considerations, 13 
efficiency of docking potentials, 19 
energy distributions for docked and 

mis-docked conformations, 20/ 
influence of receptor on conformation of 

bound ligand, 13-14 
ligand conformation, 21-24 
optimal energy functions for docking, 

20-21 
optimization of scoring function, 15-16 
optimizing an energy function, 14-21 
optimizing efficiency of scoring function, 

17 
optimizing selectivity of scoring 

function, 16-17 
ranking of parameter sets based on 

selectivity, 18/ 
reduction of charges on surface side 

chains, 16 
selectivity of scoring functions, 17-19 
successful docking algorithm 

requirements, 15 
van der Waals energy calculation, 16 
See also G O L D (genetic optimization 

for ligand docking); Ligand 
conformation; Receptor-ligand 
recognition 
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Ligand-receptor interactions, 
theoretical study, 12-13 

Ligands. See Binding affinities of 
ligands 

Linear carbamates. See Carbamates, 
linear 

Linearized Poisson-Boltzmann 
equation. See Finite difference 
solution to linearized Poisson-
Boltzmann equation and solvation 
entropy correction (FDPB + SEC) 

M 

Makriyannis model 
similarity to C form, 176 
superimposition model, 167 
See also Cannabinoids and 

aminoalkylindoles (AAIs) 
MBO(N)D program. See Multi-body 

order (N) dynamics (MBO(N)D) 
Mean curvature 
classifying shapes on molecular 

surface, 242-243 
See also Shape 

Medicinal chemistry principles. See 
P R O A N A L O G 

Molecular Hologram Q S A R (HQSAR) 
application of Molecular Holograms in 

QSAR, 217-221 
comparison with 2D-QSAR techniques, 

220, 221* 
comparison with 3D-QSAR, 220, 221/ 
cross-validated predicted activity 

versus actual activity for endothelin 
data set, 217, 218/ 

dependence of predictive quality on 
parameters, 222 

effect of Molecular Hologram 
parameters, 222 

fragment distinction, 216-217 
fragment size, 216 
histogram of cross-validated r 2 

frequency of occurrence for 1,000 
HQSAR runs with scrambled 
response data for endothelin data set, 
217, 218/ 

hologram length, 216 
HQSAR model building, 214, 216 
HQSAR model interpretation for four 

members of endothelin data set, 217, 
219/ 

HQSAR parameters, 216-217 
methodology including partial least 

squares (PLS) technique, 213-214 
Molecular Hologram generation, 214, 

215/ 

not replacing 3D-QSAR, 224 
predictive technique for biological 

activity, 212 
variation in H Q S A R cross-validated r2 

as function of hologram length for 
several data sets, 223/ 

Molecular modeling. See SM5 series of 
solvation models 

Molecule building 
S M I L E S and S U P E R - S M I L E S in 

P R O A N A L O G , 333-334 
See also P R O _ A N A L O G 

Monte Carlo molecular growth 
algorithm 

exhaustive search, 77, 79/ 
method, 73-74 

Multi-body order (N) dynamics 
( M B O ( N ) D ) 

applied force simulations method, 
91-93 

atomistic simulation method, 93 
close residues along unbinding 

pathway, 98, 103 
clasp view of body definitions for 

various residues, 96 
comparison and validation with 

atomistic methods, 98-103 
difference between and i|> angles for 

open and closed HIV-1 structures, 
94/ 

explicit solvent strategy, 103-104 
extraction forces, 98-103 
extraction forces from atomistic and 

MBO(N)D simulations, 99/ 
forcing unbinding event by pulling 

ligand from binding site, 90 
initial structure of HIV-1/A74704 

complex, 91 
interface with C H A R M M molecular 

modeling program, 91 
interflap angles from atomistic and 

MBO(N)D simulations, 101/ 
MBO(N)D simulation method, 97 
probability distribution function (pdf) 

of distances, 102/ 
range of motion of angle between flaps, 

98 
reduced variable solvent approaches, 

104-105 
relative height discrepancies of pdfs, 

103 
representative structures from pulling 

simulations, 100/ 
schematic of HIV protease with A74704 

ligand, 89/ 
schematic of pulling experiment for 

H V P protein complex, 92 
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speed improvement over atomistic 
methods, 103, 105 

substructuring of atoms into bodies, 93 
substructuring of 9HVP complex, 93, 

97 
substructuring schemes for HIV 

protease and A74704, 95 
two main strategies, 103-104 
unbinding pathways of inhibitor Cbz-

Val-Phe-Phe-Val-Cbz (A74704) 
from aspartyl protease, 87-88 

Multiple Copy Simultaneous Search 
( M C S S ) 

focused libraries using protein 
structure and MCSS computational 
method, 234-236 

See also Combinatorial chemistry 

N 

Nucleoside transport (NT) inhibitors 
common feature hypothesis for NT 

inhibitors derived by Catalyst, 155, 
158/ 

common feature hypothesis generation 
method (HipHop) in Catalyst, 
154-155, 163 

commonly used potent inhibitors, 
N B M P R [N 6 - (4 -
nitrobenzyl)thioinosine] and 
dipyridamole, 153 

conformational analysis method, 154 
database of Available Chemicals 

Directory (ACD), 163 
databases in search, 155 
es (equilibrative inhibitor-sensitive) 

and ei (equilibrative inhibitor-
insensitive) transporters, 153 

generation of catalyst hypothesis, 154 
mapping of chemical features of 

etoposide and teniposide on common 
feature hypothesis, 161/, 163 

mopidamole and carminate from 
Derwent World Drug Index database 
with proposed pharmocophoric 
features, 162/ 163 

N B M P R and 2'-deoxy-6-N-(4-
nitrobenzyl)adenosine mapped onto 
hypothesis, 155, 158/ 

new ring system for consideration from 
National Cancer Institute (NCI) 
database, 155, 159/, 163 

pharmacophore development method, 
154-155 

potential therapeutic uses, 153 
pterine, flavone, and isoflavone 

analogs as examples from NCI 

database mapped onto 
pharmacophore hypothesis, 160/ 163 

search of Maybridge and Derwent 
World Drug Index databases, 163 

study of pharmacophore analysis on 
known inhibitors, 153-154 

O 

Osteoporosis treatment 
and bone remodeling, 142 
cathepsin K inhibitors as potential 

drugs, 141 
See also Cathepsin K inhibition 

P 

Partitioning 
attempts to develop predictive models, 

122-123 
chloroform, hexadecane, and 1-octanol 

as solvents for mimicking biophases, 
122 

critical phenomena in biological and 
medicinal chemistry, 121 

lipophilic character of molecule, 122 
See also SM5 series of solvation 

models 
Pattern matching 
constraints feature in P R O _ A N A L O G , 

336 
logicals feature in P R O A N A L O G , 

336 
S M I L E S and SUPER-SMILES in 

P R O A N A L O G , 333-334 
wild cards feature in P R O _ A N A L O G , 

335 
See also P R O _ A N A L O G 

Pharmaceutical research, benefiting 
from resources, 67-68 

Pharmacophore hypothesis 
common set of structural features, 2-3 
focused libraries, 232-233 
rational drug design approaches, 3 
See also Combinatorial chemistry 

Pharmacophoric model for cannabinoids 
and aminoalkylindoles (AAIs). See 
Cannabinoids and aminoalkylindoles 
(AAIs) 

Pictorial representation of free energy 
changes (PROFEC) 

theory, 40 
See also Free energy calculation 

methods; T4 lysozyme 
Poisson-Boltzmann 

electrostatics/solvent accessible area 
( P B / S A ) 
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ligand binding free energy estimation, 
38 

theory, 41-42 
See also Free energy calculation 

methods 
Poisson-Boltzmann equation 

(linearized), electrostatic component 
of solvation energy, 26 

P R O A N A L O G 
analog library construction, 339 
case study of thrombin inhibitors, 339-

344 
categories of transformation function, 

337 
classes of transformations, 336-337 
combinatorial library building, 339 
computed binding characteristics of 

thrombin inhibitor analogs, 343* 
constraints pattern matching feature, 

336 
databases of functional groups, 334 
examples of aromatic substitution, 

substitution, replacement, addition, 
insertion, deletion, extraction, and 
ring formation, 337, 338/ 

G L O B A L 2 programming language, 333 
logicals pattern matching feature, 336 
molecule building and pattern 

matching, 333-334 
pattern matching features, 335-336 
Prometheus suite of computer-aided 

molecular design ( C A M D ) program, 
331 

SMILES and S U P E R - S M I L E S , 333-
336 

SUPER-SMILES utility functions, 
334-335 

transformations derived from lists of 
substituents, 339 

transformations in S U P E R - S M I L E S , 
336-338 

typical use and application in drug 
design process, 332/ 

user involvement in chemistry-
dependent decisions, 331 

wild cards pattern matching feature, 
335 

See also Thrombin 
Project library-central library 
example of combinatorial library of 

cyclic tertiary diamines, 228/ 
information technology, 227 
See also Combinatorial chemistry 

Protein folding, hydrophobic effect, 71 
Protein interfaces. See Shape 
Protein-ligand complexes, database, 72 
Protein-ligand docking, application of 
evolutionary algorithms, 260-262 

Q 

QSAR methods 
alternative descriptions of molecular 

fields, 313 
application of evolutionary algorithms, 

262-263 
application of K N N method to estrogen 

receptor ligands, 208 
combinatorial chemistry as alternative 

to traditional approaches to lead 
generation and optimization, 198-
199 

comparison of hit rates for known 
estrogen receptor ligands for ideal, 
random, or similarity based 
database mining, 209/ 

database mining, 202, 204 
database mining using estrogen 

receptor ligands as probe molecules, 
208, 210 

database mining using the similarity to 
a probe, 208-210 

development of computational 
approaches for targeted and diverse 
screening, 199 

development of QSAR model, 204, 206 
flow chart for algorithm for database 

mining, 205/ 
flowchart of algorithm for construction 

of K N N - Q S A R model, 201/ 
flow chart of FOCUS-2D algorithm for 

targeted library design, 203/ 
Focus-2D using Q S A R equation, 

206-208 
Focus—2D using Z r Z 2 - Z 3 description 

method and Q S A R equation, 207/ 
general computational details, 199 
genetic algorithm-partial least squares 

(GA-PLS) method, 199-200 
library design using pre-constructed 

QSAR models, 202 
plot of predicted versus actual activity 

for 10-descriptor model, 209/ 
practical applications for searching 

biologically active molecules, 210 
principles of variable selection and 

stochastic optimization, 199 
QSAR based on K-nearest neighbors 

(KNN) principle, 200-202 
relationship between predictive power 

of model (q2) and number of 
variables for estrogen receptor 
ligands, 209/ 

summary of statistics for G A - P L S for 
28 B K peptides, 206* 

 O
ct

ob
er

 2
2,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 J
ul

y 
7,

 1
99

9 
| d

oi
: 1

0.
10

21
/b

k-
19

99
-0

71
9.

ix
00

2

In Rational Drug Design; Parrill, A., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1999. 



371 

targeted bradykinin (BK) library 
design using pre-constructed QSAR 
equation, 204, 206-208 

See also E V A (eigenvalue) QSAR 
method 

Quadratic Shape Descriptor Docking 
Algorithm (QSDOCK) 

using local surface properties, 239 
See also Shape 

Qualitative Structure-Activity 
Relationships (QSAR). See QSAR 
methods 

R 

Rational drug design (RDD) 
analyzing quantitative structure-

activity relationships (QSAR), 
346-347 

chemical structures of compounds in 
pharmaceutical market with aid of 
rational approaches, 349/ 

chemical structures of some marketed 
HIV-1 protease inhibitors 
discovered with aid of rational 
approaches, 350/ 

compound databases (libraries) 
finding interesting compounds, 348 

computational chemistry techniques, 
347- 348 

designing drugs from the ground up, 350 
detecting lack of rationality in project, 

351-353 
development, 346-347 
distribution of biological data from 

primary (enzyme) and secondary 
(whole cell) assays evaluating 
synthesized compounds, 352/ 

experimental and computational 
techniques determining three-
dimensional structure of receptors, 
348 

flowchart of approaches for RDD or 
ligand design, 4/ 

future directions, 7-8 
future outlook, 353 
generating new lead compounds, 5 
histogram of distribution of computed 

logD 0 / w (octanol-water distribution 
coefficient) values for compounds 
being synthesized to explore 
structure-activity relationships 
(SAR), 353/ 

lead optimization by quantitative free 
energy perturbation methods, 8 

pharmacophore-based approaches, 3 

possible use of applied force 
simulations, 104-105 

predicting inhibitors of HIV-1 
protease, 349 

primary and secondary assays 
operative, 351 

products of computer-aided drug 
design, 348-350 

structure-based approaches, 5 
structure-based ligand design 

(SBLD) , 347 
structure evaluation, 5-7 
See also Charge Model 2 (CM2); 

Finite difference solution to 
linearized Poisson-Boltzmann 
equation and solvation entropy 
correction (FDPB + SEC); 
Hydration free energy differences; 
Multi-body order (N) dynamics 
(MBO(N)D); SM5 series of 
solvation models 

Reaction planning. See Combinatorial 
chemistry 

Reagent searching and screening. See 
Combinatorial chemistry 

Receptor-ligand binding affinity. See 
Finite difference solution to linearized 
Poisson-Boltzmann equation and 
solvation entropy correction (FDPB + 
S E C ) 

Receptor-ligand recognition 
overview and introduction, 12-14 
See also G O L D (genetic optimization 

for ligand docking); Ligand-receptor 
docking 

Reduced dimensionality in ligand-
protein structure prediction 

binding affinity distribution for virtual 
library of compounds generated using 
pteridine core in dihydrofolate 
reductase (DHFR), 308/ 

comparison of docking simulations 
using three different tetrahedral 
geometries at covalent attack site, 
300* 

compounds forming favorable hydrogen 
bonds in active site, 305/ 

compounds forming good hydrogen bond 
interactions within active site of 
DHFR, 309/ 

covalent docking method, 296-297 
database screening, 302-307 
distribution of prediction binding 

affinities for covalent inhibitors, 304/ 
energy function methodology, 294, 296 
finding active covalent inhibitors from a 

database, 302 
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generation of tetrahedral intermediate 
structure from carbonyl-containing 
ligand, 298/ 

intermolecular potential between 
ligand and protein heavy atoms, 295/ 

library generation method, 297, 299 
number of bonds allowed to rotate 

during conformational search and 
success rate for flexible and fixed 
anchor docking for five ligand-
protein complexes, 300* 

representation of covalent attack sites 
by CIF (Crystallographic 
Information File) format, 297 

search engine with evolutionary 
programming, 296 

serine proteases, 293 
site-directed combinatorial libraries, 

294 
site-directed combinatorial library 

design for DHFR, 307 
summary of covalent inhibitor 

database search processing and 
results, 303/ 

validation of covalent docking method, 
299 

validation of fixed anchor docking 
method, 300-301 

Resistance. See Drug resistance 

S 

Scoring function 
optimization, 15-16 
optimizing efficiency, 17 
optimizing selectivity, 16-17 
ranking of parameter sets based on 

selectivity, 18* 
selectivity, 17-19 
successful docking algorithm 

requirement, 15 
Screening strategies 
major limitation, 1 
structural optimization of lead 

compounds, 1 
Search/optimization algorithm, 

successful docking algorithm 
requirement, 15 

Serine protease inhibitors. See Reduced 
dimensionality in ligand-protein 
structure prediction 

Shape 
background, 240 
basic shapes, 243 
basic shapes, from signs of Gaussian 

and mean curvatures, 243* 

basic shapes, set of differential 
geometric shape descriptors, 240 

determining inter-surface association, 
244/ 

experimental, 240-244 
features of protein surfaces as basis for 

docking proteins, 240 
Gaussian (K) and mean (H) 

curvature, 242-243 
inter-surface associations, 244, 245 
inter-surface distances, 243-244, 245 
local versus global, 240 
normalized shape association profiles 

and log odds shape association 
profiles, 249/ 250/ 

protein complex classes, 240-241 
protein inhibitor-protein (PI-PR), 

protein oligomer (P-OLI), and 
protein-DNA (P -DNA) complexes, 
240-241 

qualitative results of shape 
distributions and shape associations 
for three classes of protein 
interactions, 248, 251 

rendered Connolly molecular surface 
and rendered smoothed molecular 
surface of methotrexate, 242/ 

results from analysis of surface 
associations, 246* 

shape association profiles for various 
distance ranges, 246, 248, 249/, 250/ 

shape complementarity, 251 
shape information, 246 
shape perception, 241-242 
shape subunit profiles, 246, 247/ 
surface interpenetration, 243 

Shape parameter affinity model 
( S P A M ) 

analyzing interacting surfaces of 
complexes for shape 
complementarity, 251 

See also Shape 
Site-directed combinatorial libraries 
design protocol for dihydrofolate 

reductase (DHFR), 307, 308/ 309/ 
See also Reduced dimensionality in 

ligand-protein structure prediction 
SM5 series of solvation models 
absolute value of electrostatic and 

non-electrostatic terms in selected 
models, 134*, 136 

actual parameterization, 126 
comparing performance of models in 

water, 1-octanol, hexadecane, and 
chloroform, 136 

free energy of solvation and partition 
coefficient results for p-
dichlorobenzene, 133* 
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free energy of solvation and partition 
coefficient results for thioanisole, 
132/ 

free energy of solvation and partition 
coefficients results for 1,2-
ethanediol, 131/ 

mean unsigned deviations in standard-
state free energies of solvation, 
131-132 

mean unsigned error in 1-octanol 
solvation free energies predictions, 
128/ 

mean unsigned error in aqueous 
solvation free energies predictions, 
127/ 

mean unsigned error in chloroform 
solvation free energies predictions, 
130/ 

mean unsigned error in hexadecane 
solvation free energies predictions, 
129/ 

mean unsigned errors in predicted 
solvation free energies, 
organic/water partition coefficients, 
and free energy of transfer for 
selected models, 135/, 136 

partitioning between electrostatic and 
non-electrostatic components for 
1, 2-ethanediol, thioanisole and 
/?-dichlorobenzene examples, 131/, 
132/, 133/ 

quantifying aqueous/nonpolar 
partitioning, 125-126 

solvent descriptors, 126 
SMILES. See P R O _ A N A L O G 
S M o G 
advantages stemming principally from 

speed, 84 
C H A R M M interaction energies, 81/ 
coarse-graining and knowledge-based 

potential method, 71-72 
coarse-graining and search algorithm 

method, 72-73 
correlation of measured binding 

constant for set of HIV-protease 
inhibitors, 78/ 

correlation of measured binding 
constant for set of purine nucleoside 
phosphorylase inhibitors, 78/ 

correlation of measured binding 
constant for set of SH3 domain 
ligands, 79/ 

distribution of SMoG score for design of 
1000 molecules, 79/ 

exhaustive search by Monte Carlo 
molecular growth algorithm, 77 

first generation ligand candidates for 
CD4 protein, 80/ 

fragments for small molecule growth 
algorithm, 73/ 

highly optimized candidate for CD4, 83/ 
ligand design methodology, 74-77 
limitations, 84-85 
minimization of protein-ligand complex 

with empirical potential 
( C H A R M M ) , 76 

Monte-Carlo molecular growth 
algorithm method, 73-74 

protein-ligand complexes database, 72 
qualitatively and quantitatively 

interesting ligands, 77, 80-84 
quantitative analysis of first generation 

CD4 candidates, 81/ 
quantitative analysis of second 

generation CD4 candidates, 81/ 
scoring function correlation with 

experimental binding free energies, 
77 

second generation ligand candidates for 
CD4, 82/ 

stages of ligand design with SMoG, 75/ 
Solvation entropy correction (SEC). 

See Finite difference solution to 
linearized Poisson-Boltzmann 
equation and solvation entropy 
correction (FDPB + SEC) 

Solvation free energies 
atomic partial charges for electrostatic 

solvation terms, 123 
attempts to develop predictive models, 

122-123 
functional forms and parameters of 

electrostatic model for organic 
solvents, 123 

non-electrostatic effects in first 
solvation shell, 123-124 

three kinds of terms, 123 
See also SM5 series of solvation 

models 
Structure-based approaches 
rational drug design, 5 
See also HIV-1 protease inhibitors 

( P i s ) 
Structure-based ligand design (SBLD) 
carbonic anhydrase inhibitor, 

dorzolamide hydrochloride, for 
glaucoma, 349 

future medicine discovery, 347 
inhibitors blocking dihydrofolate 

reductase (DHFR), 350 
successful prediction of HIV-1 

protease inhibitors, 349 
See also Rational drug design (RDD) 

Structure evaluation 
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fast methods for qualitative binding 
prediction of ligand binding affinities, 
7 

free energy perturbation (FEP) 
methods, 6-7 

rational drug design, 5-7 
S U P E R - S M I L E S . See P R O _ A N A L O G 
Surface complementarity. See Shape 

T 

T4 lysozyme 
force field parameters method, 43 
free energy calculations by 

thermodynamic integration, 47 
free energy changes for methyl group in 

a and p configurations in water and 
T4 lysozyme, 47* 

free energy derivatives and PROFEC, 
45, 47 

free energy derivatives (FED) and 
pictorial representation of free 
energy changes (PROFEC) 
calculations, 43 

free energy derivatives of Cpe, 45* 
models of folded and unfolded states, 

42-43 
molecular dynamics (MD) 

simulations, 43 
PROFEC contour of zero van der 

Waals potential, 46 / 
stability, 45-47 
superimposition of methyl group at 

HE21 and HE22, 46/ 
thermodynamic cycles theory, 38-39 
thermodynamic integration (TI) method 

for free energy calculations, 43 
utility of FED and PROFEC, 50 

Targeted chemical libraries. See QSAR 
methods 

Therapeutic targets, continuous increase 
of 3D-structure database, 67 

Thermodynamic cycles 
assessing stability of T4 lysozyme, 

38-39 
theory, 38-39 
thermodynamic cycle perturbation 

(TCP) approach for calculation of 
solvation free energy differences, 
112-113 

See also T4 lysozyme 
Thermodynamic integration (TI) 
ligand binding, 37 
theory, 39 
See also Free energy calculation 

methods 
Thermolysin inhibitors 

calculated binding energy difference 
versus experiment for phosphorus-
containing inhibitors, 60f, 61/ 

hydrophobic interactions, 59-60 
thermolysin, zinc endopeptidase, 54 
See also Finite difference solution to 

linearized Poisson-Boltzmann 
equation and solvation entropy 
correction (FDPB + SEC) 

Thrombin 
case study using P R O _ A N A L O G , 

339-344 
charge-charge interactions, 64-66 
computed binding characteristics of 

N A P A P analogs, 343* 
core structure for thrombin inhibitor 

design, 342/ 
Na-(2-naphthylsulphonylglycyl) 

4-amidinophenylalanine piperidide 
(NAPAP) known strong thrombin 
binder, 340 

principle features of N A P A P binding, 
341 

schematic of NAPAP's interactions in 
thrombin binding site, 342/ 

target for cardiovascular disease, 54 
See also Finite difference solution to 

linearized Poisson-Boltzmann 
equation and solvation entropy 
correction (FDPB + SEC); 
P R O A N A L O G 

Topology of protein interfaces. See 
Shape 

U 

Universal library 
combinatorial library, 227 
See also Combinatorial chemistry 

V 

Variable influence on projection (VIP) 
score 

QSAR model interpretation, 324-326 
See also E V A (eigenvalue) QSAR 

method 
Virtual libraries 
construction and management, 227 
and virtual screening, 231-232 
See also Combinatorial chemistry; 

P R O A N A L O G 
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